Research Progress on the Design of Nano-photothermal Materials and Systems for Solar Interfacial Evaporation
XU Bing1, YAO Xingjie1, LIU Jia2, ZHANG Xu1,3, YANG Xiaotong1, GUO Peixun1, ZHANG Xinyu1,*
1 School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China 2 Jinan Water Group Co., Ltd., Jinan 250012, China 3 College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
Abstract: Solar-driven air-water interfacial evaporation technology has become an important research content in the field of water treatment gradually, which is low-cost, sustainable, and can provide high-quality fresh water, especially in regions with water scarcity and inadequate energy infrastructure. In recent years, with the emergence of various nano-photothermal materials, the water evaporation efficiency has been further improved. The novel nano-photothermal materials exhibit broad-spectrum absorption and can convert solar energy into thermal energy efficiently. Moreover, optimized photothermal structure design and thermal energy measures can enhance the light absorption rate and latent heat recovery obviously. These upgrading basic materials and designs enhance the water evaporation efficiency tremendously, especially in the small-scale water evaporation equipment which driven by solar energy individually, it can achieve a huge steam generation rate. On this basis, the photothermal mechanisms and types of novel nano-photothermal materials are reviewed, the basic designs and application technologies of solar interfacial evaporation systems are reviewed, finally, the opportunities and challenges faced by the current solar-driven interfacial evaporation are discussed. Novel nano-photothermal materials and solar interfacial evaporation technologies hold great practical significance for achieving efficient and sustainable off-grid desalination.
许兵, 姚兴洁, 刘佳, 张旭, 杨晓彤, 郭培勋, 张新玉. 面向太阳能界面蒸发的纳米光热材料与系统设计研究[J]. 材料导报, 2023, 37(S1): 23030028-8.
XU Bing, YAO Xingjie, LIU Jia, ZHANG Xu, YANG Xiaotong, GUO Peixun, ZHANG Xinyu. Research Progress on the Design of Nano-photothermal Materials and Systems for Solar Interfacial Evaporation. Materials Reports, 2023, 37(S1): 23030028-8.
1 Levy R. Physics Today, 2007, 60(10), 12. 2 Kalogirou S A. Progress in Energy and Combustion Science, 2004, 30(3), 231. 3 Zhao J L, Ma C Y, Li J Q, et al. Journal of Materials of Engineering, 2019, 47(6), 11(in Chinese). 赵建玲, 马晨雨, 李建强, 等. 材料工程, 2019, 47(6), 11. 4 Ni G, Li G, Boriskina S V, et al. Nature Energy, 2016, 1(9), 1007. 5 Dao V D, Choi H S. Global Challenges, 2018, 2(2), 1700094. 6 Liu X Y, Wang L, Zhang Z Y, et al. Materials Reports, 2022, 36(19), 5(in Chinese). 刘小钰, 汪路, 张智勇, 等. 材料导报, 2022, 36(19), 5. 7 Zhou X, Guo Y, Zhao F, et al. Advanced Materials, 2020, 32(52), e2007012. 8 Zhao F, Guo Y, Zhou X, et al. Nature Reviews Materials, 2020, 5(5), 388. 9 Zhang C, Shi Y, Shi L, et al. Nature Communications, 2021, 12(1), 998. 10 Li X, Xu W, Tang M, et al. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49), 13953. 11 Hu X, Xu W, Zhou L, et al. Advanced Materials, 2017, 29(5), 1604031. 12 Wang L L, Yuan Z J, Zhang Y H, et al. Science China (Materials), 2022, 65(3), 803. 13 Wang G, Fu Y, Guo A, et al. Chemistry of Materials, 2017, 29(13), 5629. 14 Wang G, Fu Y, Ma X, et al. Carbon, 2017, 114, 117. 15 Shang M Y. The design of plasma resonance enhanced composite films and their applications for solar photothermal. Ph. D. Thesis, University of Science Technology of China, China, 2018(in Chinese). 尚蒙娅.等离子体共振增强复合薄膜设计及太阳光热应用. 博士学位论文, 中国科学技术大学, 2018. 16 Guo M M, Zhu L L, Connou K P, et al. Energy & Environmental Science, 2019, 841. 17 Wang P. Environmental Science, Nano, 2018, 55(5), 1078. 18 Chen C, Kuang Y, Hu L. Joule, 2019, 3(3), 683. 19 Liu J. Preparation and application of photothermal conversion materials with three-dimensional biological structure. Ph. D. Thesis, Shanhai Jiao Tong University, 2020(in Chinese). 刘杰. 具有三维生物结构的光热转换材料的制备及应用研究. 博士学位论文, 上海交通大学, 2020. 20 Brongersma M L, Halas N J, Nordlander P. Nature Nanotechnology, 2015, 10(1), 25. 21 Wang J, Li Y, Deng L, et al. Advanced Materials, 2017, 29(3), 1603730. 22 Wu M C, Deokar A R, Liao J H, et al. ACS Nano, 2013, 7(2), 1281. 23 Guo Y, De Vasconcelos L S, Manohar N, et al. Angewandte Chemie International Edition, 2022, 61(3), e202114074. 24 Rycenga M, Cobley C M, Zeng J, et al. Chemical Reviews, 2011, 111(6), 3669. 25 Liu Y, Chen J, Guo D, et al. ACS Applied Materials & Interfaces, 2015, 7(24), 13645. 26 Cui L, Zhang P, Xiao Y, et al. Advanced Materials, 2018, 30(22), 1706805. 27 Zhang L, Wang P. ACS Sustainable Chemistry & Engineering, 2016, 44(3), 1223. 28 Lu D, Zhou Z, Wang Z, et al. Advanced Materials, 2022, 34(11), 2109718. 29 Wang X, He Y, Cheng G, et al. Energy Conversion and Management, 2016, 130, 176. 30 Yin Z, Wang H, Jian M, et al. ACS Applied Materials & Interfaces, 2017, 9(34), 28596. 31 Xu N, Hu X, Xu W, et al. Advanced Materials, 2017, 29(28), 1606762. 32 Chen X, He S, Falinski M M, et al. Energy & Environmental Science, 2021, 14(10), 5347. 33 Su X, Hao D, Sun M, et al. Advanced Functional Materials, 2022, 32(6), 2108135. 34 Zhang Q, Ren L, Xiao X, et al. Carbon, 2020, 156, 225. 35 Zhu M, Li Y, Chen F, et al. Advanced Energy Materials, 2018, 8(4), 1701028. 36 Wang Z, Liu Y, Tao P, et al. Small, 2014, 10, 3234. 37 Zhou L, Tan Y, Ji D, et al. Science Advances, 2016, 2(4), e1501227. 38 Sun W, Zhong G, Kübel C, et al. Angewandte Chemie International Edition, 2017, 56(22), 6329. 39 Bak K, Kang G, Cho S K, et al. Nature Communications, 2015, 6(1), 10103. 40 Zhang L, Xing J, Wen X, et al. Nanoscale, 2017, 9(35), 12843. 41 Ye M, Jia J, Wu Z, et al. Advanced Energy Materials, 2017, 7(4), 1601811. 42 Shi Y, Li R, Shi L, et al. Advanced Sustainable Systems, 2018, 2(3), 1700145. 43 Yi L, Ci S, Luo S, et al. Nano Energy, 2017, 41, 600. 44 Kashyap V, Al-Bayati A, Sajadi S M, et al. Journal of Materials Chemistry A, 2017, 5(29), 15227. 45 Zhao F, Zhou X, Shi Y, et al. Nature Nanotechnology, 2018, 13(6), 489. 46 Jiang Q, Gholami Derami H, Ghim D, et al. Journal of Materials Che-mistry A, 2017, 5(35), 18397. 47 Wu X, Chen G Y, Zhang W, et al. Advanced Sustainable Systems, 2017, 1(6), 1700046. 48 Kabeel A E, El-Agouz S A. Desalination, 2011, 276(1), 1. 49 Tao P, Ni G, Song C, et al. Nature Energy, 2018, 3(12), 1031. 50 Ni G, Miljkovic N, Ghasemi H, et al. Nano Energy, 2015, 17, 290. 51 Jin H, Lin G, Bai L, et al. Nano Energy, 2016, 28, 397. 52 Yang H, Sun Y, Peng M, et al. ACS Nano, 2022, 16(2), 2511. 53 Ghasemi H, Ni G, Marconnet A M, et al. Nature Communications, 2014, 5(1), 4449. 54 Zeng Y, Yao J, Horri B A, et al. Energy & Environmental Science, 2011, 4(10), 4074. 55 Zhao Q H. Plastics Science and Technology, 2020, 48(11), 58(in Chinese). 赵启红. 塑料科技, 2020, 48(11), 58. 56 Zhou J, Sun Z, Chen M, et al. Advanced Functional Materials, 2016, 26(29), 5368. 57 Zhang L, Tang B, Wu J, et al. Advanced Materials, 2015, 27(33), 4889. 58 Zhu G, Xu J, Zhao W, et al. ACS Applied Materials & Interfaces, 2016, 8(46), 31716. 59 Chen R, Wu Z, Zhang T, et al. RSC Advances, 2017, 7(32), 19849. 60 Xu W, Hu X, Zhuang S, et al. Advanced Energy Materials, 2018, 8, 1702884. 61 Zheng S, Yang M, Chen X, et al. Environmental Science & Technology, 2022, 56(2), 1289. 62 Ni G, Zandavi S H, Javid S M, et al. Energy & Environmental Science, 2018, 11(6), 1510. 63 Wilson H M, Tushar, Raheman AR S, et al. Solar Energy Materials and Solar Cells, 2020, 210, 110489. 64 Wu J, Zodrow K R, Szemraj P B, et al. Journal of Materials Chemistry A, 2017, 5(45), 23712. 65 Dongare P D, Alabastri A, Pedersen S, et al. Proceedings of the National Academy of Sciences, 2017, 114(27), 6936. 66 Chiavazzo E, Morciano M, Viglino F, et al. Nature Sustainability, 2018, 1(12), 763. 67 Li X, Lin R, Ni G, et al. National Science Review, 2018, 5(1), 70. 68 Yang P, Liu K, Chen Q, et al. Energy & Environmental Science, 2017, 10(9), 1923. 69 Liu Y, Lou J, Ni M, et al. ACS Applied Materials & Interfaces, 2016, 8(1), 772.