Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 23030028-8    https://doi.org/10.11896/cldb.23030028
  无机非金属及其复合材料 |
面向太阳能界面蒸发的纳米光热材料与系统设计研究
许兵1, 姚兴洁1, 刘佳2, 张旭1,3, 杨晓彤1, 郭培勋1, 张新玉1,*
1 山东建筑大学市政与环境工程学院,济南 250101
2 济南水务集团有限公司,济南 250012
3 扬州大学环境科学与工程学院,江苏 扬州 225127
Research Progress on the Design of Nano-photothermal Materials and Systems for Solar Interfacial Evaporation
XU Bing1, YAO Xingjie1, LIU Jia2, ZHANG Xu1,3, YANG Xiaotong1, GUO Peixun1, ZHANG Xinyu1,*
1 School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
2 Jinan Water Group Co., Ltd., Jinan 250012, China
3 College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
下载:  全 文 ( PDF ) ( 22805KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 太阳能驱动的空气-水界面蒸发技术已逐渐成为水处理领域的重要研究内容,其成本低、可持续,特别是在水资源匮乏和能源基础设施不完善的情况下,可以提供高质量的淡水。近几年,随着各类纳米光热材料的兴起,水蒸发效率得到进一步的提升。新型纳米光热材料能够获得较大的宽带吸收,并且可以高效地将光能转化为热能;同时,光热结构设计和热能管控措施能更好地提高材料的吸光率和潜热回收利用率,这些基础材料和设计的升级使太阳能水蒸发效率得到显著增强,特别是在完全由太阳能驱动的小型水蒸发设备中能够达到极高的蒸汽产生速率。在此基础上,本文综述了新型纳米光热材料的光热机理及类型,并总结了太阳能界面蒸发系统的基本设计和应用技术,最后讨论了当前太阳能驱动的界面蒸发所面临的机遇与挑战。新型纳米光热材料和太阳能界面蒸发技术对实现高效可持续离网脱盐具有重要现实意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许兵
姚兴洁
刘佳
张旭
杨晓彤
郭培勋
张新玉
关键词:  离网脱盐  界面蒸发  纳米光热材料  海水淡化  太阳能热脱盐    
Abstract: Solar-driven air-water interfacial evaporation technology has become an important research content in the field of water treatment gradually, which is low-cost, sustainable, and can provide high-quality fresh water, especially in regions with water scarcity and inadequate energy infrastructure. In recent years, with the emergence of various nano-photothermal materials, the water evaporation efficiency has been further improved. The novel nano-photothermal materials exhibit broad-spectrum absorption and can convert solar energy into thermal energy efficiently. Moreover, optimized photothermal structure design and thermal energy measures can enhance the light absorption rate and latent heat recovery obviously. These upgrading basic materials and designs enhance the water evaporation efficiency tremendously, especially in the small-scale water evaporation equipment which driven by solar energy individually, it can achieve a huge steam generation rate. On this basis, the photothermal mechanisms and types of novel nano-photothermal materials are reviewed, the basic designs and application technologies of solar interfacial evaporation systems are reviewed, finally, the opportunities and challenges faced by the current solar-driven interfacial evaporation are discussed. Novel nano-photothermal materials and solar interfacial evaporation technologies hold great practical significance for achieving efficient and sustainable off-grid desalination.
Key words:  off-grid desalination    interfacial evaporation    nano-photothermal material    seawater desalination    solar thermal desalination
发布日期:  2023-09-06
ZTFLH:  P747  
  TB34  
通讯作者:  *张新玉,2018年3月毕业于哈尔滨工业大学市政工程专业,获工学博士学位;2018年4月—2019年3月日本神户大学学术研究员;2019年4月—2020年11月苏州大学助理研究员;2021年1月至今在山东建筑大学工作。现主持国家自然科学基金委青年项目1项(22008162),山东省重点研发计划(重大创新)子任务1项(2020CXGC011203),以第一作者/通信作者身份在膜领域重要期刊Journal of Membrane Science(IF=10.53)发表了论文5篇,以第一作者身份在ACS Applied Materials & Interfaces(IF=10.383)发表了论文2篇。xinyukingdom@hotmail.com   
作者简介:  许兵,山东建筑大学市政与环境工程学院副教授、硕士研究生导师。2000年山东建筑大学给水排水工程专业本科毕业,2003年西安建筑科技大学市政工程专业硕士毕业后到山东建筑大学工作至今,2013年山东大学环境工程专业博士毕业。目前主要从事饮用水处理技术、污水生态处理技术等方面的研究工作。发表论文30余篇,授权专利10余项等。
引用本文:    
许兵, 姚兴洁, 刘佳, 张旭, 杨晓彤, 郭培勋, 张新玉. 面向太阳能界面蒸发的纳米光热材料与系统设计研究[J]. 材料导报, 2023, 37(S1): 23030028-8.
XU Bing, YAO Xingjie, LIU Jia, ZHANG Xu, YANG Xiaotong, GUO Peixun, ZHANG Xinyu. Research Progress on the Design of Nano-photothermal Materials and Systems for Solar Interfacial Evaporation. Materials Reports, 2023, 37(S1): 23030028-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030028  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/23030028
1 Levy R. Physics Today, 2007, 60(10), 12.
2 Kalogirou S A. Progress in Energy and Combustion Science, 2004, 30(3), 231.
3 Zhao J L, Ma C Y, Li J Q, et al. Journal of Materials of Engineering, 2019, 47(6), 11(in Chinese).
赵建玲, 马晨雨, 李建强, 等. 材料工程, 2019, 47(6), 11.
4 Ni G, Li G, Boriskina S V, et al. Nature Energy, 2016, 1(9), 1007.
5 Dao V D, Choi H S. Global Challenges, 2018, 2(2), 1700094.
6 Liu X Y, Wang L, Zhang Z Y, et al. Materials Reports, 2022, 36(19), 5(in Chinese).
刘小钰, 汪路, 张智勇, 等. 材料导报, 2022, 36(19), 5.
7 Zhou X, Guo Y, Zhao F, et al. Advanced Materials, 2020, 32(52), e2007012.
8 Zhao F, Guo Y, Zhou X, et al. Nature Reviews Materials, 2020, 5(5), 388.
9 Zhang C, Shi Y, Shi L, et al. Nature Communications, 2021, 12(1), 998.
10 Li X, Xu W, Tang M, et al. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49), 13953.
11 Hu X, Xu W, Zhou L, et al. Advanced Materials, 2017, 29(5), 1604031.
12 Wang L L, Yuan Z J, Zhang Y H, et al. Science China (Materials), 2022, 65(3), 803.
13 Wang G, Fu Y, Guo A, et al. Chemistry of Materials, 2017, 29(13), 5629.
14 Wang G, Fu Y, Ma X, et al. Carbon, 2017, 114, 117.
15 Shang M Y. The design of plasma resonance enhanced composite films and their applications for solar photothermal. Ph. D. Thesis, University of Science Technology of China, China, 2018(in Chinese).
尚蒙娅.等离子体共振增强复合薄膜设计及太阳光热应用. 博士学位论文, 中国科学技术大学, 2018.
16 Guo M M, Zhu L L, Connou K P, et al. Energy & Environmental Science, 2019, 841.
17 Wang P. Environmental Science, Nano, 2018, 55(5), 1078.
18 Chen C, Kuang Y, Hu L. Joule, 2019, 3(3), 683.
19 Liu J. Preparation and application of photothermal conversion materials with three-dimensional biological structure. Ph. D. Thesis, Shanhai Jiao Tong University, 2020(in Chinese).
刘杰. 具有三维生物结构的光热转换材料的制备及应用研究. 博士学位论文, 上海交通大学, 2020.
20 Brongersma M L, Halas N J, Nordlander P. Nature Nanotechnology, 2015, 10(1), 25.
21 Wang J, Li Y, Deng L, et al. Advanced Materials, 2017, 29(3), 1603730.
22 Wu M C, Deokar A R, Liao J H, et al. ACS Nano, 2013, 7(2), 1281.
23 Guo Y, De Vasconcelos L S, Manohar N, et al. Angewandte Chemie International Edition, 2022, 61(3), e202114074.
24 Rycenga M, Cobley C M, Zeng J, et al. Chemical Reviews, 2011, 111(6), 3669.
25 Liu Y, Chen J, Guo D, et al. ACS Applied Materials & Interfaces, 2015, 7(24), 13645.
26 Cui L, Zhang P, Xiao Y, et al. Advanced Materials, 2018, 30(22), 1706805.
27 Zhang L, Wang P. ACS Sustainable Chemistry & Engineering, 2016, 44(3), 1223.
28 Lu D, Zhou Z, Wang Z, et al. Advanced Materials, 2022, 34(11), 2109718.
29 Wang X, He Y, Cheng G, et al. Energy Conversion and Management, 2016, 130, 176.
30 Yin Z, Wang H, Jian M, et al. ACS Applied Materials & Interfaces, 2017, 9(34), 28596.
31 Xu N, Hu X, Xu W, et al. Advanced Materials, 2017, 29(28), 1606762.
32 Chen X, He S, Falinski M M, et al. Energy & Environmental Science, 2021, 14(10), 5347.
33 Su X, Hao D, Sun M, et al. Advanced Functional Materials, 2022, 32(6), 2108135.
34 Zhang Q, Ren L, Xiao X, et al. Carbon, 2020, 156, 225.
35 Zhu M, Li Y, Chen F, et al. Advanced Energy Materials, 2018, 8(4), 1701028.
36 Wang Z, Liu Y, Tao P, et al. Small, 2014, 10, 3234.
37 Zhou L, Tan Y, Ji D, et al. Science Advances, 2016, 2(4), e1501227.
38 Sun W, Zhong G, Kübel C, et al. Angewandte Chemie International Edition, 2017, 56(22), 6329.
39 Bak K, Kang G, Cho S K, et al. Nature Communications, 2015, 6(1), 10103.
40 Zhang L, Xing J, Wen X, et al. Nanoscale, 2017, 9(35), 12843.
41 Ye M, Jia J, Wu Z, et al. Advanced Energy Materials, 2017, 7(4), 1601811.
42 Shi Y, Li R, Shi L, et al. Advanced Sustainable Systems, 2018, 2(3), 1700145.
43 Yi L, Ci S, Luo S, et al. Nano Energy, 2017, 41, 600.
44 Kashyap V, Al-Bayati A, Sajadi S M, et al. Journal of Materials Chemistry A, 2017, 5(29), 15227.
45 Zhao F, Zhou X, Shi Y, et al. Nature Nanotechnology, 2018, 13(6), 489.
46 Jiang Q, Gholami Derami H, Ghim D, et al. Journal of Materials Che-mistry A, 2017, 5(35), 18397.
47 Wu X, Chen G Y, Zhang W, et al. Advanced Sustainable Systems, 2017, 1(6), 1700046.
48 Kabeel A E, El-Agouz S A. Desalination, 2011, 276(1), 1.
49 Tao P, Ni G, Song C, et al. Nature Energy, 2018, 3(12), 1031.
50 Ni G, Miljkovic N, Ghasemi H, et al. Nano Energy, 2015, 17, 290.
51 Jin H, Lin G, Bai L, et al. Nano Energy, 2016, 28, 397.
52 Yang H, Sun Y, Peng M, et al. ACS Nano, 2022, 16(2), 2511.
53 Ghasemi H, Ni G, Marconnet A M, et al. Nature Communications, 2014, 5(1), 4449.
54 Zeng Y, Yao J, Horri B A, et al. Energy & Environmental Science, 2011, 4(10), 4074.
55 Zhao Q H. Plastics Science and Technology, 2020, 48(11), 58(in Chinese).
赵启红. 塑料科技, 2020, 48(11), 58.
56 Zhou J, Sun Z, Chen M, et al. Advanced Functional Materials, 2016, 26(29), 5368.
57 Zhang L, Tang B, Wu J, et al. Advanced Materials, 2015, 27(33), 4889.
58 Zhu G, Xu J, Zhao W, et al. ACS Applied Materials & Interfaces, 2016, 8(46), 31716.
59 Chen R, Wu Z, Zhang T, et al. RSC Advances, 2017, 7(32), 19849.
60 Xu W, Hu X, Zhuang S, et al. Advanced Energy Materials, 2018, 8, 1702884.
61 Zheng S, Yang M, Chen X, et al. Environmental Science & Technology, 2022, 56(2), 1289.
62 Ni G, Zandavi S H, Javid S M, et al. Energy & Environmental Science, 2018, 11(6), 1510.
63 Wilson H M, Tushar, Raheman AR S, et al. Solar Energy Materials and Solar Cells, 2020, 210, 110489.
64 Wu J, Zodrow K R, Szemraj P B, et al. Journal of Materials Chemistry A, 2017, 5(45), 23712.
65 Dongare P D, Alabastri A, Pedersen S, et al. Proceedings of the National Academy of Sciences, 2017, 114(27), 6936.
66 Chiavazzo E, Morciano M, Viglino F, et al. Nature Sustainability, 2018, 1(12), 763.
67 Li X, Lin R, Ni G, et al. National Science Review, 2018, 5(1), 70.
68 Yang P, Liu K, Chen Q, et al. Energy & Environmental Science, 2017, 10(9), 1923.
69 Liu Y, Lou J, Ni M, et al. ACS Applied Materials & Interfaces, 2016, 8(1), 772.
[1] 李心, 郭琳, 黄金的, 王丽, 谢海泉, 叶立群. 碳材料/甲壳素复合水凝胶高效太阳能海水淡化[J]. 材料导报, 2022, 36(12): 21030098-6.
[2] 杨德龙, 季旭, 陈颖, 王聪, 韩景阳, 徐海洋, 廖超. 纳米材料在太阳能蒸馏中的应用研究进展[J]. 材料导报, 2020, 34(21): 21115-21124.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed