Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 23080053-6    https://doi.org/10.11896/cldb.23080053
  高分子与聚合物基复合材料 |
一步法制备PLA/PDA/Ag多孔抗菌纳米纤维膜及其
促进伤口愈合作用研究
滕桂香1,*, 杨怡凡2,3, 侯苏童3, 姚慧1, 张春3,*
1 兰州交通大学生物与制药工程学院,兰州 730070
2 无锡药明康德新药开发股份有限公司,天津 300457
3 兰州交通大学化学化工学院,兰州 730070
Preparation of PLA/PDA/Ag Porous Antibacterial Nanofibrous Membrane by One-step and Their Effect on Promoting Wound Healing
TENG Guixiang1,*, YANG Yifan2,3, HOU Sutong3, YAO Hui1, ZHANG Chun3,*
1 School of Biological and Pharmaceutical Engineering,Lanzhou Jiaotong University, Lanzhou 730070, China
2 WuXi PharmaTech,Tianjin 300457, China
3 School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 6190KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有效控制伤口生物液不规则流出和防止伤口感染在促进伤口愈合和皮肤再生过程中存在巨大的挑战。本研究采用“静电纺丝+原位交联”的一步法制备了一种兼具渗出液吸附和伤口抗菌的PLA/PDA/Ag多孔纤维膜。通过对纤维膜化学组成、内部结构和力学性能等指标进行综合测试,并将其用于抗菌和伤口愈合实验,验证了纤维膜在创伤愈合中的实际应用。结果表明,PLA/PDA/Ag纤维膜的吸水率可达65.0%,接触角为72.35°,对伤口渗出液有明显的吸附和导流作用;该纤维膜对S.aureus和E.coli有明显抑菌作用,二者的抑菌圈直径分别为(25.4±0.6) mm和(28.7±0.9) mm;用于小鼠创伤实验时,第9 d小鼠皮肤创伤愈合度达到了95.3%,且未出现感染现象,伤口收缩率明显优于对照组。本研究制备的PLA/PDA/Ag纤维膜的亲水性、抗菌性和拉伸性可通过纺丝液配比进行调节,在伤口敷料设计和应用领域具有潜在的开发前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
滕桂香
杨怡凡
侯苏童
姚慧
张春
关键词:  静电纺丝  抗菌纤维  银纳米粒子  伤口愈合    
Abstract: Effective control the irregular flow of wound biological fluid and prevention of wound infection remain significant challenges in promoting wound healing and skin regeneration. In this study, a PLA/PDA/Ag nanofibrous membrane with exudate adsorption, wound antibacterial and mechanical properties was prepared by a one-step method of ‘electrospinning + in-situ crosslinking’. After testing the chemical composition, internal structure and mechanical properties of the fibrous membrane, it was used in antibacteria and wound healing experiments to verify the practical application on wound healing. The results showed that the water absorption of PLA/PDA/Ag fibrous membrane can reached 65.0% and the water contact angle is 72.35°, which can contribute to the obvious adsorption and diversion effect on the wound exudate. The diameter of inhibition zones of S.ureus and E.coli were (25.4±0.6) mm and (28.7±0.9) mm, respectively when treated with the PLA/PDA/Ag fibrous membrane. The skin wound healing of mice reached 95.3% on the 9th day after treated with the membrane, with no infection occurred, and the wound contraction rate was significantly better than that of the control. The hydrophilicity, antibacterial property and stretchability of the PLA/PDA/Ag fibrous membrane prepared in this study can be adjusted by the addition ratio of DA, and then be used in different wound fields, which has certain application prospects in the field of wound accessory design.
Key words:  electrospinning    anti-bacteria fiber    silver nanoparticle    wound healing
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TQ340.64  
  R318.08  
基金资助: 国家自然科学基金(52062025);甘肃省科技计划资助(22YF7NA149; 22CX8GA062);甘肃省教育厅创新基金项目(2022A-032)
通讯作者:  *滕桂香,兰州交通大学生物与制药工程学院讲师。2020年12月西北师范大学生命科学学院化学生物学专业博士毕业,2021年12月入职兰州交通大学工作至今。目前主要研究领域为药物结构修饰、活性评价及载体材料开发等方面,发表论文5篇,包括Materials Science and Engineering C、Neuroscience Bulletin、ACS Applied Materials & Interfaces等。tenggx666@126.com
张春,兰州交通大学化学化工学院教授、博士研究生导师。2005年西北师范大学化学系本科毕业,2011年西北师范大学无机化学专业硕士毕业,2014年西北师范大学无机化学专业博士毕业后到兰州交通大学工作至今。目前主要从事无机纳米材料、磁功能复合材料、环境修复材料等相关领域的研究工作。发表论文20余篇,包括Chemical Engineering Journal、ACS Applied Materials & Interfaces、Applied Surface Science等。zh-chun@163.com   
引用本文:    
滕桂香, 杨怡凡, 侯苏童, 姚慧, 张春. 一步法制备PLA/PDA/Ag多孔抗菌纳米纤维膜及其
促进伤口愈合作用研究[J]. 材料导报, 2023, 37(18): 23080053-6.
TENG Guixiang, YANG Yifan, HOU Sutong, YAO Hui, ZHANG Chun. Preparation of PLA/PDA/Ag Porous Antibacterial Nanofibrous Membrane by One-step and Their Effect on Promoting Wound Healing. Materials Reports, 2023, 37(18): 23080053-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080053  或          http://www.mater-rep.com/CN/Y2023/V37/I18/23080053
1 Fan Y, Lu Q, Liang W, et al. European Polymer Journal, 2021, 157, 110619.
2 Shi L, Liu X, Wang W, et al. Advanced Materials, 2019, 31(5), 1804187.
3 Wang C H,Li M L, Bi X C, et al. Journal of Textile Research, 2021, 42(5), 16 (in Chinese).
王春红, 李明龙, 碧旋才, 等. 纺织学报, 2021, 42(5), 16.
4 Zhang D, Zhang N, Ma F, et al. Journal of Hazardous Materials, 2018, 360, 150.
5 Chen Z, Cui K Y, Zhang W Y. Materials Reports, 2023, 37(Z1), 22100086-1 (in Chinese).
陈卓, 崔科洋, 张文宇, 等. 材料导报, 2023, 37(Z1), 22100086-1.
6 Zhao X J. Modification of bacterial cellulose with polydopamine/polyethyleneimine for antibacterial and wound healing application.Master's Thesis, Tianjin University of Science and Technology, China, 2021 (in Chinese).
赵翔军. 细菌纤维素/聚多巴胺/聚乙烯亚胺复合材料的抗菌及伤口愈合研究. 硕士学位论文, 天津科技大学, 2021年.
7 Khamrai M, Banerjee S L, Pau S, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(14), 12083.
8 Park J, Brust T F, Lee H J, et al. ACS Nano, 2014, 8(4), 3347.
9 Liu M Y, Zeng G J, Wang K, et al. Nanoscale, 2016, 8(38), 16819.
10 Zhang Z, Zhang J, Zhang B L, et al. Nanoscale, 2013, 5(1), 118.
11 Ku S H, Park C B. Biomaterials, 2010, 31(36), 9431.
12 Zhang C, Gu Y, Teng G, et al. ACS Applied Materials & Interfaces, 2020, 12(26), 29883.
13 Wu Z, Zhou W, Deng W, et al. ACS Applied Materials & Interfaces, 2020, 12(18), 20307.
14 Naraginti S, Kumari P L, Das R K, et al. Materials Science and Engineering C, 2016, 62, 293.
15 Zhang M, Zhang X, He X, et al. Nanoscale, 2012, 4, 3141.
16 Sr A, Mr B, Sz C, et al. European Polymer Journal, 2021, 157, 110635.
17 Gama e Silva G L, de Bustamante M S S, Dias M L, et al. Arabian Journal of Chemistry, 2023, 16, 104392.
18 Song K, Hao Y, Liu Y, et al. Carbohydrate Polymers, 2023, 300, 120272.
19 Guo Y, Ghobeira R, Sun Z, et al. Polymer, 2022, 262, 125502.
20 Han G, Cai J, Liu C, et al. Applied Surface Science, 2020, 541, 148566.
21 Zhang Q, Wang Y, Zhang W, et al. Colloids and surfaces B: Biointerfa-ces, 2019, 184, 110506.
22 Alippilakkotte S, Kumar S, Sreejith L. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 771.
23 Sharifabad S S, Derazkola H A, Esfandyar M, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 118, 104455.
24 Ouda M, Ibrahim Y, Kallem P, et al. Journal of Cleaner Production, 2022, 330, 129871.
25 Shen W, Ao F, Ge X, et al. Materials Today Communications, 2022, 30, 103093.
26 Chankaew C, Somsri S, Tapala W, et al. Particuology, 2018, 40, 160.
27 Wang Q, Zhou S, Wang L, et al. Composites Part B Engineering, 2021, 224, 109165.
28 Yang L, Han Z, Chen C, et al. Materials Science and Engineering C, 2020, 117, 111265.
[1] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[2] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[3] 周鉴澄, 林骏, 赵小敏, 陈丹青, 陈国华. 静电纺丝法制备定向导液复合纤维材料的研究进展[J]. 材料导报, 2023, 37(16): 21100141-7.
[4] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[5] 王通, 王广飞, 张淑敏, 曲承蕾, 李诚博, 高永林. 基于天然多糖的水凝胶伤口敷料的研究进展[J]. 材料导报, 2022, 36(6): 20060050-9.
[6] 王琪, 李可, 吴益华, 朱志刚, 施惟恒. 静电纺丝制备高疏水性的CsPbBr3纳米晶聚甲基丙烯酸甲酯复合纤维薄膜[J]. 材料导报, 2022, 36(16): 21020035-5.
[7] 宋一龙, 赵芳, 李志尊, 程兆刚, 黄红军. 热处理温度对SiO2微纳纤维形貌及隔热性能的影响[J]. 材料导报, 2022, 36(12): 21030010-5.
[8] 李增鹏, 戴剑锋, 成晨, 冯伟. BiFeO3多铁材料形貌与磁光性能调控研究[J]. 材料导报, 2022, 36(11): 20120114-7.
[9] 李曼, 武丁胜, 魏安方, 刘锁, 赵玲玲, 王衡, 王克付, 凤权. 静电纺丝聚己内酯/明胶载姜黄素生物活性敷料的制备和性能[J]. 材料导报, 2022, 36(11): 21010039-7.
[10] 段瑞侠, 陈金周, 刘文涛, 何素琴, 刘浩, 黄淼铭, 朱诚身. 聚乳酸基压电材料的研究和应用[J]. 材料导报, 2022, 36(10): 20080234-8.
[11] 陈卫英, 陈真勇, 杨在君, 匙峰, 黎云祥. 胶原-乙酸混合溶液静电纺丝可纺性及电纺胶原膜力学特性评估[J]. 材料导报, 2021, 35(z2): 516-519.
[12] 岳青, 王绍德, 徐飞, 刘涛. 静电纺丝技术及其在各领域中的应用[J]. 材料导报, 2021, 35(Z1): 594-599.
[13] 朱浩彤, 刘玲伟, 闫铭, 张鸿, 郭静, 夏英. 纤维气凝胶的分类、制备工艺及应用现状[J]. 材料导报, 2021, 35(23): 23057-23067.
[14] 徐梦婷, 马艳, 刘祖兰, 陈磊, 代方银, 李智. 后处理对静电纺丝素纤维膜性能的影响[J]. 材料导报, 2021, 35(14): 14180-14184.
[15] 李林刚, 胡雪燕, 李刚, 蔡以兵. 电纺Al2O3纳米纤维毡的制备及染料吸附脱色性能[J]. 材料导报, 2021, 35(12): 12008-12013.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed