Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 22080175-7    https://doi.org/10.11896/cldb.22080175
  城市固废材料高效处理及资源化利用 |
钢渣掺量对橡胶沥青混合料ARAC-13性能的影响
柳力1,2, 朱晓明1, 刘朝晖1,2,*, 李文博1, 杨程程1, 黄优1,2, 刘磊鑫1
1 长沙理工大学交通运输工程学院,长沙 410114
2 长沙理工大学公路养护技术国家工程研究中心,长沙 410114
Effect of Steel Slag Content on Performance of Rubber Mixture ARAC-13
LIU Li1,2, ZHU Xiaoming1, LIU Zhaohui1,2,*, LI Wenbo1, YANG Chengcheng1, HUANG You1,2, LIU Leixin1
1 School of Traffic & Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China
2 National Engineering Research Center of Highway Maintenance Technology, Changsha University of Science & Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 13160KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高钢铁废渣的综合利用率和经济效益、优化环境,采用体积替代法进行钢渣沥青混合料组成设计,通过设计膨胀破坏试验新方法分析钢渣沥青混合料的体积稳定性,基于车辙试验、冻融劈裂试验和低温小梁弯曲试验等,开展不同钢渣掺量下的ARAC-13沥青混合料路用性能研究,并依托广西滨海公路项目对钢渣沥青混合料路面进行经济效益评估。结果表明,ARAC-13沥青混合料的毛体积相对密度和最佳油石比均与钢渣掺量呈正相关性,钢渣掺量的增加会降低混合料的体积稳定性,增大体积膨胀风险。当钢渣100%等体积替代粗集料时,ARAC-13沥青混合料的动稳定度、残留稳定度、冻融劈裂强度比、最大弯拉应变(-10 ℃)、摆值和构造深度均有不同程度的提高,可显著提升ARAC-13沥青混合料的路用性能,且可节约7.0%左右的材料成本,具有较大的应用前景和经济价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柳力
朱晓明
刘朝晖
李文博
杨程程
黄优
刘磊鑫
关键词:  钢渣  ARAC-13  路用性能  体积稳定性  经济效益    
Abstract: To improve the comprehensive utilization rate and economic benefit of steel slag and optimize the environment, the volume substitution method was used to design the composition of steel slag asphalt mixture. The volume stability of steel slag asphalt mixture was analyzed by designing a new method of expansion failure test. Through the rutting test, freeze-thaw splitting test, and low-temperature beam bending test, the road performance of ARAC-13 asphalt mixture with different steel slag contents was studied, and the economic benefits of steel slag asphalt mixture pavement were evaluated based on the Coastal Highway Project in Guangxi. The results showed that the volume relative density of the ARAC-13 asphalt mixture and the optimum asphalt content are both positively correlated with the steel slag content. The increase in steel slag content will reduce the volume stability of the mixture and increase the risk of volume expansion. When the steel slag replaces the coarse aggregate with 100% volume, the dynamic stability, residual stability, freeze-thaw splitting strength ratio, maximum flexural strain (-10 ℃), pendulum value, and structural depth of the ARAC-13 asphalt mixture are improved, to some varying degrees. A large amount of steel slag (100vol%) can not only significantly improve the road performance of ARAC-13 asphalt mixture, but also save about 7.0% of the material cost, which has great application prospects and economic value.
Key words:  steel scoria    ARAC-13    pavement performance    volume stability    economic benefit
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  U414  
基金资助: 国家重点研发项目(2021YFB2601000);湖南省自然科学基金(2020JJ5578;2022JJ40479);湖南省教育厅自然科学基金优秀青年项目(20B033;21B0296)
通讯作者:  *刘朝晖,长沙理工大学二级教授、博士研究生导师。1990年6月,本科毕业于长沙交通学院道路工程专业;2000年12月,获湖南大学建筑与土木工程硕士学位;2007年12月,获长沙理工大学道路与铁道工程博士学位。主要从事路面结构与材料等方面的研究工作。为国家百千万人才工程人选、国家有突出贡献中青年专家,享受国务院政府特殊津贴。获国家科技进步二等奖2项。发表学术论文100余篇。723772885@qq.com;   
作者简介:  柳力,长沙理工大学交通运输工程学院副教授、硕士研究生导师。2011年6月,本科毕业于中南林业科技大学;2014年6月,毕业于长沙理工大学,获道路与铁道工程硕士学位;2017年6月毕业于长沙理工大学,获道路与铁道工程博士学位。主要从事路面结构与新材料方面的研究工作。发表学术论文50余篇,其中SCI、EI检索论文20余篇。
引用本文:    
柳力, 朱晓明, 刘朝晖, 李文博, 杨程程, 黄优, 刘磊鑫. 钢渣掺量对橡胶沥青混合料ARAC-13性能的影响[J]. 材料导报, 2023, 37(10): 22080175-7.
LIU Li, ZHU Xiaoming, LIU Zhaohui, LI Wenbo, YANG Chengcheng, HUANG You, LIU Leixin. Effect of Steel Slag Content on Performance of Rubber Mixture ARAC-13. Materials Reports, 2023, 37(10): 22080175-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080175  或          http://www.mater-rep.com/CN/Y2023/V37/I10/22080175
1 Chen G X, Yin Y P, Luo Y F. Bulletin of the Chinese Ceramic Society, 2022, 41(2), 657 (in Chinese).
陈改霞, 尹艳平, 罗要飞. 硅酸盐通报, 2022, 41(2), 657.
2 Zhang Q, Hu L Q, Liu X C. Bulletin of the Chinese Ceramic Society, 2020, 39(2), 493 (in Chinese).
张强, 胡力群, 刘兴成. 硅酸盐通报, 2020, 39(2), 493.
3 Wang L Y, Li J S, Tao Y X, et al. China Journal of Highway and Transport, 2021, 34(1), 35 (in Chinese).
王丽艳, 李劲松, 陶云翔, 等. 中国公路学报, 2021, 34(1), 35.
4 Chen Z W, Leng Z, Xiao Y, et al. China Journal of Highway and Transport, 2021, 34(10), 190 (in Chinese).
陈宗武, 冷真, 肖月, 等. 中国公路学报, 2021, 34(10), 190.
5 Shen A Q, Zhai C W, Guo Y C, et al. Journal of Adhesion Science and Technology, 2018, 32(24), 2727.
6 Gao J, Zhang Z W, Han Z Q, et al. Materials Reports A:Review Papers, 2016, 30(12), 87 (in Chinese).
高杰, 张正伟, 韩振强, 等. 材料导报:综述篇, 2016, 30(12), 87.
7 Gao J, Sha A, Wang Z, et al. Journal of Cleaner Production, 2017, 152, 429.
8 Dhoble Y N, Ahmed S. Journal of Material Cycles and Waste Management, 2018, 20(3), 1373.
9 Gao Y, Wang W H, Chen M, et al. Science Technology and Enginee-ring, 2021, 21(33), 14040 (in Chinese).
高颖, 王伟赫, 陈萌, 等. 科学技术与工程, 2021, 21(33), 14040.
10 Kandhal P S, Hoffman G L. Transportation Research Record, 1997, 15, 28.
11 Wu S P, Cui P D, Xie J, et al. China Journal of Highway and Transport, 2021, 34(10), 166 (in Chinese).
吴少鹏, 崔培德, 谢君, 等. 中国公路学报, 2021, 34(10), 166.
12 Li W B, Liu L, Liu Z H, et al. Materials Reports, 2022, 36(11), 126 (in Chinese).
李文博, 柳力, 刘朝晖, 等. 材料导报, 2022, 36(11), 126.
13 Ma T, Chen C L, Zhang Y, et al. China Journal of Highway and Transport, 2021, 34(10), 1 (in Chinese).
马涛, 陈葱琳, 张阳, 等. 中国公路学报, 2021, 34(10), 1.
14 Hang W D, Zheng M, Huang M. Journal of Building Materials, 2015, 18(6), 1089 (in Chinese).
黄卫东, 郑茂, 黄明. 建筑材料学报, 2015, 18(6), 1089.
15 Wu H, Chen C, Zhang W, et al. IOP Conference Series:Earth and Environmental Science, 2019, 330(4), 113.
16 Mason B. The constitution of some basic open-hearth slags, J Iron Steel Inst, UK, 1944.
17 Guangxi Academy of Traffic Sciences. Rubber asphalt pavement construction technical specifications (DB 45/T 1098-2014), China, 2014(in Chinese).
广西交通科学研究院. 橡胶沥青路面施工技术规范 (DB 45/T 1098-2014), 2014.
18 Liu X C. Study on properties of OGFC-13 asphalt mixture with different steel slag content. Ph. D. Thesis, Chang'an University, China, 2019 (in Chinese).
刘兴成. 不同钢渣掺量的OGFC-13沥青混合料性能研究. 博士学位论文, 长安大学, 2019.
19 Shen A Q, Liu B, Guo Y C, et al. Journal of Building Materials, 2019, 22(2), 284 (in Chinese).
申爱琴, 刘波, 郭寅川, 等. 建筑材料学报, 2019, 22(2), 284.
[1] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[2] 李小占, 张鸿泽, 张苏花, 李鑫, 王长龙, 陈敬亮, 翟玉新, 荊牮霖, 马锦涛, 平浩岩, 郑永超. 矿冶固废基胶结充填料的制备及性能研究[J]. 材料导报, 2023, 37(8): 22040240-6.
[3] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[4] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[5] 丁滔, 金珊珊, 索智, 季节, 张扬. 嵌锁式沥青稳定碎石配合比设计及性能研究[J]. 材料导报, 2022, 36(Z1): 22030296-5.
[6] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[7] 王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
[8] 黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
[9] 楚英杰, 王爱国, 孙道胜, 刘开伟, 马瑞, 吴修胜, 郝发军. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 20110088-10.
[10] 李文博, 张双侠, 史倩倩, 于明明. 新疆严寒区UV老化下的沥青路面抗损劣性能研究[J]. 材料导报, 2022, 36(21): 21100120-6.
[11] 纪小平, 孙恩永, 代聪, 周荣征. 铁尾矿沥青混合料的路用性能研究[J]. 材料导报, 2022, 36(21): 21050004-7.
[12] 王凤, 肖月, 崔培德, 磨炼同, 方明镜. 集料形态特征对沥青混合料性能影响规律的研究进展[J]. 材料导报, 2022, 36(17): 21030063-13.
[13] 周雯怡, 易军艳, 陈卓, 冯德成. 泡沫沥青冷再生混合料界面黏附性提升原理与路用性能验证[J]. 材料导报, 2022, 36(16): 21110120-9.
[14] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[15] 吴春丽, 陈哲, 谢红波, 麦俊明, 苏青. 不锈钢渣的资源处置研究进展[J]. 材料导报, 2021, 35(Z1): 462-466.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed