Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21090026-4    https://doi.org/10.11896/cldb.21090026
  金属与金属基复合材料 |
冷却速率对CuAlNi形状记忆合金阻尼行为的影响
雷波, 郝刚领*, 李育川, 王金
延安大学物理与电子信息学院,陕西 延安 716000
Effect of Cooling Rates on Damping Behavior of CuAlNi Shape Memory Alloy
LEI Bo, HAO Gangling*, LI Yuchuan, WANG Jin
College of Physics and Electronic Information, Yan'an University, Yan'an 716000, Shaanxi, China
下载:  全 文 ( PDF ) ( 12152KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Cu基形状记忆合金作为一类重要的阻尼材料有着广泛的目标需求,其室温附近高阻尼能力更是与应用直接相关,获得了广泛关注。采用粉末冶金技术制备了Cu-27.5Al-3.5Ni(原子分数/%,下同)形状记忆合金,通过改变冷却方式实现了对材料微观结构的调控。实验结果表明,水冷和空冷样品中各有一个典型的内耗峰,该峰随冷却速率的增大向低温区室温附近移动,分析认为内耗峰起源于马氏体逆相变。对于炉冷样品,由于冷却速率过低,材料发生共析分解,无马氏体相产生,进而无内耗峰产生。与炉冷和空冷样品相比,水冷样品具有更高的室温域阻尼能力,这与马氏体条数量以及马氏体/奥氏体之间界面的增多有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雷波
郝刚领
李育川
王金
关键词:  CuAlNi形状记忆合金  阻尼特性  马氏体逆相变  冷却速率    
Abstract: Cu-based shape memory alloy as a kind of important damping material has wide objective demands. Its high damping capacity near room-temperature of alloy is directly associated with the application and has gained special attention. In this paper, Cu-27.5Al-3.5Ni (at%) shape memory alloy was prepared by powder metallurgy. The microstructure of the alloy was controlled by changing the cooling mode. A typical internal friction peak was observed in the water-cooling and air-cooling samples, which moved towards lower temperature region near room temperature with the increase of cooling rate. It is rationalized that the internal friction peak is originated with the reverse martensitic transformation. The absence of internal friction peak in furnace cooling samples is attributed to the eutectoid decomposition of the material at high temperature and thus no martensitic phase formation. Compared with furnace-cooled and air-cooled samples, water-cooled samples can obtain higher damping capacity at room temperature range, which is related to the increase of numbers of martensite strips and interface amount between martensite and austenite.
Key words:  CuAlNi shape memory alloy    damping property    reverse martensitic transformation    cooling rate
发布日期:  2023-01-03
ZTFLH:  TG139.6  
基金资助: 国家自然科学基金(52061038;51661032;51301150);陕西省科技厅陕西青年科技新星人才专项(2013KJXX-11);陕西省“特支计划”区域发展人才专项(2020-44);延安大学研究生教育创新计划项目(YCX2021061)
通讯作者:  glhao@issp.ac.cn   
作者简介:  雷波,2020年7月毕业于延安大学,获物理学学士学位。现为延安大学凝聚态物理专业硕士研究生,在导师郝刚领教授的指导下,主要从事铜基形状记忆合金和高阻尼复合材料的研究。
郝刚领,理学博士、教授,2007年于中国科学院合肥物质科学研究院/固体物理研究所获得凝聚态物理博士学位,毕业后到延安大学工作至今。现为延安大学材料物理研究所所长、物理学一级硕士点学科带头人。主要从事内耗与固体缺陷、高阻尼材料、形状记忆合金以及超轻泡沫金属材料的制备、性能及应用的基础研究。主持包括国家自然科学基金3项、省部级科研项目3项在内的科研项目15项,已完成13项;国内外发表科研论文58篇,SCI/EI收录38篇;授权国家发明专利2项。
引用本文:    
雷波, 郝刚领, 李育川, 王金. 冷却速率对CuAlNi形状记忆合金阻尼行为的影响[J]. 材料导报, 2022, 36(24): 21090026-4.
LEI Bo, HAO Gangling, LI Yuchuan, WANG Jin. Effect of Cooling Rates on Damping Behavior of CuAlNi Shape Memory Alloy. Materials Reports, 2022, 36(24): 21090026-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090026  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21090026
1 Zou P F, Zheng C H, Hu L, et al. Journal of Materials Science and Technology, 2021, 77, 82.
2 Li Q Q, Li Y, Ma Y H. Materials Reports, 2020, 34(3), 3142(in Chinese).
李启泉, 李岩, 马悦辉. 材料导报, 2020, 34(3), 3142.
3 Yang J, Wu Y H. Shape memory alloy and application, University of Science and Technology of China Press, China, 1993(in Chinese).
杨杰, 吴月华. 形状记忆合金及其应用, 中国科学技术大学出版社, 1993.
4 Yang J N, Huang B, Gu X J, et al. Chinese Journal of Solid Mechanics, DOI:10.19636/j.cnki.cjsm42-1250/o3.2021.028(in Chinese).
杨建楠, 黄彬, 谷小军, 等. 固体力学学报, DOI:10.19636/j.cnki.cjsm42-1250/o3.2021.028.
5 Zheng X J, Deng X C, Cai L S, et al. Journal of Guangdong University of Technology, 2010, 27(4), 54(in Chinese).
郑侠君, 邓孝城, 蔡莲淑, 等. 广东工业大学学报, 2010, 27(4), 54.
6 Guo M X, Wang M P, Li Z, et al. Metallic Functional Materials, 2004(3), 5(in Chinese).
郭明星, 汪明朴, 李周, 等. 金属功能材料, 2004(3), 5.
7 Ivanić I, KoŽuh S, GrguriĆ T H, et al. Materials (Basel), 2022, 15(5),1825.
8 Saud S N, Hamzah E, Bakhsheshi-Rad H R, et al. Scanning, 2017, 2017, 1789454.
9 Juan J S, Nó M L, Schuh C A. Nature Nanotech, 2009, 4, 415.
10 Ding Y J, Wang Q Z, Yin F X, et al. Materials Science and Engineering: A, 2019, 743, 606.
11 Akhtar S, Saad M, Misbah M R, et al. Mater Today, 2018, 5(9), 18649.
12 Li G W, Qin D C, Li S L, et al. Journal of Hebei Normal University, 1994(3), 17(in Chinese).
李国旺, 秦大成, 李士琳, 等. 河北师范大学学报, 1994(3), 17.
13 Han F S, Zhu Z G, Gao J C. Metallurgical and Materials Transactions A, 1999, 30, 771.
14 Li Z, Wang M, Xu G Y. Copper based shape memory alloy materials, South Central University Press, China, 2010 (in Chinese).
李周, 汪明朴, 徐根应. 铜基形状记忆合金材料, 中南大学出版社, 2010.
15 Feng D. Metal physics, Science Press, China, 1999 (in Chinese).
冯端. 金属物理学第三卷, 科学出版社, 1999.
16 Qin D C, Li G W. Journal of Capital Normal University(Natural Sciences Edition), 1994, 19(2), 53(in Chinese).
秦大成, 李国旺. 首都师范大学学报(自然科学版), 1994, 19(2), 53.
17 Zheng C Q. Study on crystal structure and damping properties of CuAlMn shape memory alloy. Ph.D. Thesis, Jiangsu University, China, 2011(in Chinese).
郑成琪. CuAlMn形状记忆合金的晶体结构和阻尼性能研究. 博士学位论文, 江苏大学, 2011.
18 Zhu C Z. Study on internal friction phenomenon and mechanism of thermoelastic martensitic transformation. Master's Thesis, Hefei University of Technology, China, 2016 (in Chinese).
朱成忠. 热弹性马氏体相变内耗现象及机理的研究. 硕士学位论文, 合肥工业大学, 2011.
19 Hao G L, Wang X F, Wang H, et al. Chinese Physics B, 2015, 24(6), 461.
20 Monteiro S N, Motta A, Matlakhova L A, et al. Tecnologia em Metalurgia e Materiais, 2009, 6(2), 80.
21 Grossi L J, Reinke G, Rosa D M, et al. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 44.
22 Li S T, Sun X H, Qian C L. Journal of Central South Institute of Mining and Metallurgy, 1985(1), 71(in Chinese).
李树棠, 孙孝华, 钱崇梁.中南矿冶学院学报, 1985(1), 71.
23 Otsuka K, Wayman C M. Shape memory materials, Cambridge University Press, UK, 1998.
24 Xu Z Y. Martensitic transformation and martensite, Science Press, China, 1999 (in Chinese).
徐祖耀. 马氏体相变与马氏体, 科学出版社, 1999.
[1] 欧黎明, 毛丰, 乔永枫, 高梦锞, 吴修德, 魏世忠. 稀土元素Eu和冷却速率对Al-7Si合金中共晶硅的影响[J]. 材料导报, 2021, 35(8): 8103-8107.
[2] 邓杰, 孙新军, 张涛, 宋新莉, 梁小凯, 马玉喜, 向志东. 冷却速率对中锰马氏体耐磨钢微观结构及硬度的影响[J]. 材料导报, 2020, 34(10): 10126-10131.
[3] 晁代义, 孙有政, 刘晓滕, 李兴东, 李维建, 吕正风, 程仁策. Zn/Mg比及时效温度对Al-Zn-Mg-Cu系合金析出行为的影响[J]. 材料导报, 2019, 33(Z2): 398-401.
[4] 晁代义, 孙有政, 刘晓滕, 李兴东, 李维建, 吕正风, 程仁策. Cu元素含量对Al-Zn-Mg-Cu系合金析出行为的影响[J]. 材料导报, 2019, 33(Z2): 402-405.
[5] 陈茜, 陈庆, 梁永超, 高廷红, 郭笑天, 田泽安, 谢泉, 何帆. 冷速对液态GaAs快速凝固过程中微观结构的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2351-2354.
[6] 丁雨田,豆正义,高钰璧,高 鑫,李海峰,刘德学. 原位观察不同冷却速率下GH3625合金的凝固过程[J]. 《材料导报》期刊社, 2017, 31(24): 150-155.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed