Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21090173-10    https://doi.org/10.11896/cldb.21090173
  无机非金属及其复合材料 |
不同加载速率下差异性含水率尾砂胶结充填体力学行为及损伤特性研究
宋学朋1, 郝宇鑫1, 王石2,*, 刘晨晖1, 张辽1
1 中国矿业大学(北京)能源与矿业学院,北京 100083
2 江西理工大学资源与环境工程学院,江西 赣州 341000
Study on Mechanical Behavior and Damage Characteristics of Cemented Tailings Backfill with Different Water Content Under Different Loading Rates
SONG Xuepeng1, HAO Yuxin1, WANG Shi2,*, LIU Chenhui1, ZHANG Liao1
1 School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
2 School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
下载:  全 文 ( PDF ) ( 32201KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 充填体的力学特性是充填配比设计和维护地下采场稳定性的关键指标,而加载速率变化与充填体所处环境(湿度、温度)不同均会对充填力学行为产生影响。本工作对不同含水率(干燥、饱水、自然)充填体开展了变加载速率(0.1 mm/min、0.25 mm/min、0.5 mm/min、1 mm/min、2 mm/min)的单轴抗压强度测试,获得了含水率和加载速率作用下的充填体力学参数和破坏模式,并依据能量守恒定理,研究了不同条件影响下充填体的能量演化规律,建立了基于能量的损伤变量。结果表明:(1)随着加载速率增加,充填体的抗压强度先增加再减小,存在临界加载速率;干燥和饱水对充填体的抗压强度和弹性模量分别具有强化和弱化效应,干燥导致充填体由延性向脆性转变,应力-应变曲线达到峰值应力后快速下降,而饱水虽有利于充填体的延性,但水的弱化作用使其在较小应变下即发生破坏。(2)加载速率由0.1 mm/min增加至2 mm/min,干燥充填体破坏模式由拉剪混合破坏逐渐向以拉伸为主的破坏模式转变,饱水充填体以拉伸破坏为主,而自然充填体整体上表现为拉剪混合破坏。(3)提高加载速率加快了充填体的能量交换,干燥、饱水和自然对充填体能量演化的影响主要体现在应力-应变曲线塑性屈服阶段与破坏阶段,耗散能-应变曲线的斜率由大到小顺序为干燥、饱水、自然。(4)基于能量演化的损伤特征曲线呈现出初始损伤、损伤稳定发展、加速损伤和破坏四个阶段,提高加载速率减小了加速损伤阶段的起始应变,干燥和饱水加剧了充填体损伤发展。该研究可为深入理解开采扰动引起的荷载变化和不同湿度条件下充填体的力学行为和稳定性提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋学朋
郝宇鑫
王石
刘晨晖
张辽
关键词:  尾砂胶结充填体  加载速率  含水率  能量演化  损伤特征    
Abstract: The mechanical properties of backfill are the key indexes for filling ratio design and maintaining the stability of underground stope. The variation of the loading rate and the environment (humidity, temperature) in which backfill is located can affect the mechanical behavior of the backfill. In this work, uniaxial compressive strength tests with variable loading rates (0.1 mm/min, 0.25 mm/min, 0.5 mm/min, 1 mm/min and 2 mm/min) were carried out for backfill with different water content (dry, saturated and nature). The mechanical parameters and failure modes of fillings under state change and loading rate were obtained. According to the energy conservation theorem, the relationship between the energy evolution and stress-strain behavior of backfill under different conditions was studied. On this basis, the damage variable of backfill based on energy was established. The results show that:(i) as the loading rate increased, the compressive strength of backfill first increased and then decreased, and there was a critical loading rate. The dry and saturated had strengthening and weakening effects on the compressive strength and elastic modulus of backfill respectively. The dry led to the transformation of backfill from ductility to brittleness, and the stress-strain curve decreased rapidly after reaching the peak stress. Although the saturated state was conducive to the ductility of backfill, the weakening effect of water makes it destroy under small strain. (ii) When the loading rate increased from 0.1 mm/min to 2 mm/min, the failure mode of the dry backfill gradually changed from tensile shear mixed failure to tensile failure (less shear failure). The saturated filling body is mainly tensile failure, while the nature backfill showed tensile shear mixed failure as a whole. (iii) Increasing the loading rate accelerated the energy exchange of backfill. The effects of drying, saturation and nature on the energy evolution of backfill were mainly reflected in the plastic yield stage and failure stage of the corresponding stress-strain curve. The slope of the energy dissipation strain curve is dry, saturation and nature from large to small. (iv) The damage strain characteristic curve based on energy evolution showed four stages: initial damage, stable damage development, accele-rated damage and failure. Increasing the load rate shortens the initial strain in the accelerated damage stage, and the dry and saturated aggravates the damage development of backfill. This study can provide a theoretical basis for further understanding the load change caused by mining disturbance and the mechanical behavior and stability of backfill under different humidity conditions.
Key words:  cemented tailings backfill    loading rate    water content    energy evolution    damage characteristic
发布日期:  2023-01-03
ZTFLH:  TD853  
基金资助: 国家自然科学基金(51804134;51804135);江西省自然科学基金(20181BAB216013);江西理工大学清江青年英才支持计划资助(JXUSTQJYX2019007)
通讯作者:  sxp9612@126.com   
作者简介:  宋学朋,2021年6月毕业于江西理工大学矿业工程专业,获硕士学位。现为中国矿业大学(北京)能源与矿业学院博士研究生,研究方向为充填采矿。
王石,江西理工大学副教授、硕士研究生导师。2016年6月毕业于中南大学采矿工程专业,获工学博士学位。2016年9月至今任教于江西理工大学资源与环境工程学院。研究方向为采矿工艺与充填理论。发表SCI/EI论文20余篇。
引用本文:    
宋学朋, 郝宇鑫, 王石, 刘晨晖, 张辽. 不同加载速率下差异性含水率尾砂胶结充填体力学行为及损伤特性研究[J]. 材料导报, 2022, 36(24): 21090173-10.
SONG Xuepeng, HAO Yuxin, WANG Shi, LIU Chenhui, ZHANG Liao. Study on Mechanical Behavior and Damage Characteristics of Cemented Tailings Backfill with Different Water Content Under Different Loading Rates. Materials Reports, 2022, 36(24): 21090173-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090173  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21090173
1 Wu A X, Yang Y, Cheng H Y, et al. Chinese Journal of Engineering, 2018, 40(5), 517(in Chinese).
吴爱祥, 杨莹, 程海勇, 等. 工程科学学报, 2018, 40(5), 517.
2 Deng H W, Duan T, Tian G L, et al. Minerals, 2021, 11(8),886.
3 Xie H P. Journal of China Coal Society, 2019, 44(5), 1283(in Chinese).
谢和平. 煤炭学报, 2019, 44(5), 1283.
4 Li D X, Zhang P Q, Zhao G L, et al. The Chinese Journal of Nonferrous Metals, DOI: 10.11817/j.ysxb.1004.0609.2021-37637(in Chinese)
李德贤, 张鹏强, 赵国亮, 等. 中国有色金属学报, DOI: 10.11817/j.ysxb.1004.0609.2021-37637.
5 Xie H P. Advanced Engineering Sciences, 2017, 49(2), 1(in Chinese).
谢和平. 工程科学与技术, 2017, 49(2), 1.
6 Wang S, Song X, Wei M L, et al. Construction and Building Materials, 2021, 297(11),123780.
7 Yan B X, Zhu W C, Hou C, et al. Construction and Building Materials, 2020, 249, 118733.
8 Xu W B, ZhangY L, Zuo X H, et al. Cement and Concrete Composites, 2020, 114, 103804.
9 Hou Y Q, Yin S H, Yang S X, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(6), 1661(in Chinese).
侯永强, 尹升华, 杨世兴, 等. 中国有色金属学报, 2021, 31(6), 1661.
10 Chen Q S, Tao Y B, Zhang Q L, et al. Chemosphere, 2022, 286,131630.
11 Jafari M, Grabinsky M. International Journal of Rock Mechanics and Mining Sciences, 2021, 144(11),104749.
12 Xue G L, Yilmaz E, Feng G R, et al. Construction and Building Materials, 2021, 289, 123163.
13 Wu J Y. Macroscopic and microscopic mechanical properties and creep model of cemented waste rock backfill.Ph.D. Thesis, China University of Mining and Technology, China,2019(in Chinese).
吴疆宇. 胶结充填体的宏细观力学特性及蠕变模型. 博士学位论文, 中国矿业大学, 2019.
14 Chen A P, Dong F S, Zhang Y S, et al. Journal of China University of Mining & Technology, 2021, 50(1), 50(in Chinese).
程爱平, 董福松, 张玉山, 等. 中国矿业大学学报, 2021, 50(1), 50.
15 Hu J H, Zhao F W, Ren Q F, et al. Royal Society Open Science, 2019, 6(12), 191227.
16 Wu J Y, Yin Q, Gao Y, et al. Environmental Science and Pollution Research, 2021, 28(2),16589.
17 Haruna S, Fall M. Canadian Journal of Civil Engineering, 2020, 48(4), 429.
18 Ouattara D, Belem T, Mbonimpa M, et al. Construction and Building Materials, 2018, 181, 59.
19 Yu L Q, Yao Q L, Xu Q, et al. Journal of China Coal Society, 2020, 46(11), 3488(in Chinese).
于利强, 姚强岭, 徐强, 等. 煤炭学报, 2020, 46(11), 3488.
20 Luo K, Zhao G D, Zeng J J, et al. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8),1833(in Chinese).
罗可, 招国栋, 曾佳君, 等. 岩石力学与工程学报, 2018, 37(8),1833.
21 Fan X Q, Liu J D, Hu S W, et al. Journal of Building Structures, 2020, 41(7),204(in Chinese).
范向前, 刘决丁, 胡少伟, 等. 建筑结构学报, 2020, 41(7),204.
22 Hou Y Q, Yin S H, Cao Y, et al. Journal of Hunan University (Natural Sciences), 2020, 47(8), 108(in Chinese).
侯永强, 尹升华, 曹永, 等. 湖南大学学报(自然科学版), 2020, 47(8), 108.
23 Gan D Q, Han L, Liu Z Y, et al. Metal Mine, 2016, 45(12), 150(in Chinese).
甘德清, 韩亮, 刘志义,等. 金属矿山, 2016, 45(12), 150.
24 Li Y G, Jin L Z, Tan H, et al. Journal of Harbin Institute of Technology, 2016, 48(9),49(in Chinese).
李雅阁, 金龙哲, 谭昊, 等. 哈尔滨工业大学学报, 2016, 48(9),49.
25 Cao S, Yilmaz E, Song W D, et al. Construction and Building Materials, 2019, 213, 313.
26 Liu J W. Evolution of stress and displacement and stability of surrounding rock mass-backfill combination system in backfilling mining. Ph.D. Thesis,China University of Mining and Technology, China, 2020(in Chinese).
刘佳维. 充填开采围岩-充填体组合体系应力-位移演化及稳定性研究.博士学位论文, 中国矿业大学, 2020.
27 Cao S R. Research on damage and destructive mechanism of tailings cemented backfill at different saturations. Master's Thesis, Jiangxi University of Science and Technology, China,2018(in Chinese).
曹世荣. 不同饱和度尾砂胶结充填体损伤破坏机理研究. 硕士学位论文, 江西理工大学, 2018.
28 Liu J W, Sui W H, Zhang D Y, et al. Journal of Cleaner Production, 2020, 250, 119576.
29 Yu Z Q, Wang Y Y, Wang H. IEEE Access, 2021, 9, 9356.
30 Zhang C, Yang C Q, Bai Y. Rock and Soil Mechanics, 2021, 42(9), 2343 (in Chinese).
张超, 杨楚卿, 白允. 岩土力学, 2021, 42(9), 2343.
31 Wang C L, Du G Y, Li E B, et al. Chinese Journal of Rock Mechanics and Engineering, 2021,40(11), 2238. (in Chinese).
王传乐, 杜广印, 李二兵, 等.岩石力学与工程学报, 2021, 40 (11), 2238.
32 Zhao K, Huang M, Yan Y J, et al. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(s1), 2781(in Chinese).
赵康, 黄明, 严雅静, 等. 岩石力学与工程学报, 2021, 40(s1), 2781.
33 Xiu Z G, Wang S H, Ji Y C, et al. Construction and Building Materials, 2021, 271, 121526.
34 Xu W B, Song W D, Wang D X, et al. Journal of China University of Mining & Technology, 2014, 43(5), 808(in Chinese).
徐文彬, 宋卫东, 王东旭, 等. 中国矿业大学学报, 2014, 43(5), 808.
35 Hou Y Q, Yin S H, Cao Y, et al. Journal of Central South University (Science and Technology), 2020, 51(7),1955(in Chinese).
侯永强, 尹升华, 曹永, 等. 中南大学学报:自然科学版, 2020, 51(7),1955.
36 Xu X D, Sun G H, Yao X L, et al. Rock and Soil Mechanics, 2020, 41(9), 3003(in Chinese).
徐晓冬, 孙光华, 姚旭龙, 等. 岩土力学, 2020, 41(9), 3003.
37 Cheng A P, Zhang Y S, Wang P, et al. Journal of Harbin Institute of Technology, 2019, 51(10), 130(in Chinese).
程爱平, 张玉山, 王平, 等. 哈尔滨工业大学学报, 2019, 51(10), 130.
38 Miao S J, Liu Z J, Zhao X G, et al. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5), 928(in Chinese).
苗胜军, 刘泽京, 赵星光, 等. 岩石力学与工程学报, 2021, 40(5), 928.
[1] 胡时, 蔡海兵, 马祖桥, 袁助, 丁祖德. 不同加载速率下饱水高延性喷射混凝土的单轴压缩试验[J]. 材料导报, 2022, 36(8): 21090227-10.
[2] 陈徐东, 冯璐, 张锦华, 刘志恒, 董文, 温荣鲲. 不同密度泡沫混凝土梁断裂特性及数值模拟[J]. 材料导报, 2022, 36(4): 20090086-7.
[3] 宣卫红, 徐文磊, 陈育志, 陈徐东, 程熙媛. 不同加载速率下高性能水泥基复合材料断裂性能研究[J]. 材料导报, 2021, 35(22): 22051-22056.
[4] 侯永强, 尹升华, 赵国亮, 张鹏强, 杨世兴, 张敏哲, 刘洪斌. 聚丙烯纤维增强尾砂胶结充填体力学及流动性能研究[J]. 材料导报, 2021, 35(19): 19030-19035.
[5] 杨荣周, 徐颖, 陈佩圆, 葛进进. 干、湿养护下橡胶细集料水泥砂浆压缩破裂及能量演化特性[J]. 材料导报, 2020, 34(4): 4049-4055.
[6] 张新天, 姚鑫航, 蓝群力. 路用聚合物稳定碎石基层养生规律分析[J]. 材料导报, 2019, 33(Z2): 639-642.
[7] 白强来, 付佺, 潘成刚, 王林德, 慕朝阳. 高延伸率柔性耐烧蚀涂料拉伸性能分析[J]. 材料导报, 2019, 33(z1): 485-487.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed