Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 150-155    https://doi.org/10.11896/j.issn.1005-023X.2017.024.030
  材料研究 |
原位观察不同冷却速率下GH3625合金的凝固过程
丁雨田,豆正义,高钰璧,高 鑫,李海峰,刘德学
兰州理工大学材料科学与工程学院,省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates
DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue
Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 776KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用带有红外加热炉的共聚焦激光扫描显微镜(CLSM)对GH3625高温合金在不同冷却速率(30 ℃/min、100 ℃/min和200 ℃/min)下的凝固过程进行了动态原位观察,通过差示扫描量热分析仪(DSC)、扫描电镜(SEM)和能谱仪(EDS)研究了凝固后的组织形态及相的析出规律。结果表明,GH3625合金的液相线温度在1 356.5 ℃,在凝固过程中自由表面液相分数随温度和时间的变化关系满足Avrami方程;凝固过程中主要相的析出顺序依次为γ基体相、碳化物和Laves相;在GH3625合金凝固过程中,随着冷却速率的增大,枝晶细化,枝晶间距减小,成分偏析减轻,Laves相分布更加弥散,且以析出共晶Laves相为主;凝固末期大量的Nb元素富集在枝晶间和晶界,这是形成Laves相的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁雨田
豆正义
高钰璧
高 鑫
李海峰
刘德学
关键词:  GH3625高温合金  共聚焦激光扫描显微镜  冷却速率  凝固  Laves相    
Abstract: The solidification process of the GH3625 superalloy was in-situ observed at different cooling rates (30 ℃/min, 100 ℃/min and 200 ℃/min ) by means of confocal laser scanning microscope combined with an infrared image furnace. Differential scanning calorimeter (DSC), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) were adopted to observe the solidified microstructure and the regularity of precipitated phases. The results showed that the liquidus temperature of GH3625 superalloy was 1 356.5 ℃, and the relationship between the variation of solid phase content at the free surface and temperature as well as time was in accordance with Avrami equation. With the decrease of temperature, the precipitation sequence of phases were γ matrix phase, carbides and Laves phase. In the solidification process of GH625 superalloy, with the increasing cooling rate, the dendritic structure refined, the dendrite arm spacing decreased, component segregation reduced, the Laves phase distribution was more dispersed, and mainly precipitated eutectic Laves phase. A large number of Nb segregation occurred in the final period of solidification at the interdendritic and grain boundaries, and this mainly contributes to the formation of Laves phase.
Key words:  GH3625 superalloy    confocal laser scanning microscope    cooling rate    solidification    Laves phase
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TG146.1+5  
基金资助: 甘肃省重大科技专项(145RTSA004);国家自然科学基金(51661019)
作者简介:  丁雨田:男,1962年生,博士,教授,博士研究生导师,研究方向为高温合金 E-mail:Dingyutian@126.com 豆正义:男,1990年生,硕士研究生,研究方向为高温合金热变形 E-mail:douzyi@sina.com
引用本文:    
丁雨田,豆正义,高钰璧,高 鑫,李海峰,刘德学. 原位观察不同冷却速率下GH3625合金的凝固过程[J]. 《材料导报》期刊社, 2017, 31(24): 150-155.
DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates. Materials Reports, 2017, 31(24): 150-155.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.030  或          https://www.mater-rep.com/CN/Y2017/V31/I24/150
1 郭建亭. 高温合金材料学[M]. 北京:科学出版社, 2008:4.
2 中国航空材料手册编委会. 中国航空材料手册[M]. 北京:中国标准出版社, 2002:238.
3 Peng Z, Xie F, Zhang J, et al. Effect of undercooling on microstructure evolution in IN718 superalloy[J]. Rare Metal Mater Eng, 2013,42(10):1988.
4 Sun W R, Guo S R, Lu D Z, et al. Effect of sulfur on the solidification and segregation in Inconel 718 alloy[J]. Maters Lett, 1997,31(3):195.
5 Silva C C, Miranda H C D, Motta M F, et al. New insight on the solidification path of an alloy 625 weld overlay[J]. J Mater Res Technol, 2013,2(3):228.
6 Wang L, Dong J X, Li C Q. Effect of cooling rate on the segregation and Rayleigh number of IN718 during solidification[J]. J University of Science and Technology Beijing, 2007,29(12):1222(in Chinese).
王玲, 董建新, 李传起. 冷速对IN718凝固过程中偏析和Rayleigh数的影响[J]. 北京科技大学学报, 2007,29(12):1222.
7 Kim J H, Kim S G, Inoue A. In site observation of solidification behavior in undercooled Pd-Cu-Ni-P alloy by using a confocal scanning laser microscope[J]. Acta Mater, 2001,49(4):615.
8 Huang F X, Zhang J M, Wang X H, et al. In-situ observation of engulfment and pushing of non-metallic inclusions at solidifying interface[J]. J Iron Steel Res, 2008,20(5):14(in Chinese).
黄福祥, 张炯明, 王新华, 等. 夹杂物在钢液凝固前沿行为的原位动态观察[J]. 钢铁研究学报, 2008,20(5):14.
9 Miao Z J. Study on solidification segregation and homogenization process of IN718 series superalloy[D]. Shanghai: Shanghai Jiaotong University, 2011(in Chinese).
繆竹骏. IN718系列高温合金凝固偏析及均匀化处理工艺研究[D]. 上海: 上海交通大学,2011.
10Wang W, Xuan F Z, Miao Z J, et al. In-site observation of solidification process of GH4169 superalloy at different cooling rates[J]. Mater Mech Eng, 2011,35(9):65(in Chinese).
王威, 轩福贞, 繆竹骏, 等. 不同冷速下GH4169高温合金凝固过程的原位观察[J]. 机械工程材料, 2011,35(9):65.
11Shibata H, Yin H, Yoshinaga S, et al. In-situ observation of engulfment and pushing of nonmetallic inclusions in steel melt by advancing melt/solid interface[J]. ISIJ Int, 1998,38(2):149.
12Huang Q J, Liu G Q. Application of microsoft word in quantitative microstructure analysis[J]. Chin J Stereology Image Anal, 2002,7(3):182(in Chinese).
黄启今, 刘国权. 通用软件 Microsoft Word 在显微组织定量分析中的应用[J]. 中国体视学与图像分析, 2002,7(3):182.
13胡汉起. 金属凝固原理[M]. 北京: 机械工业出版社, 1991:101.
14Miao Z J, Shan A D, Wang W, et al. Solidification process of conventional superalloy by confocal scanning laser microscope[J]. Trans Nonferrous Met Soc China, 2011,21(2):236.
15Yi T L, Pu L N, Zhu G L. Segregation of niobium in laser cladding Inconel 718 superalloy[J]. Trans Nonferrous Met Soc China, 2016, 26(2):431.
16Andenna G. Primary and secondary dendrite spacing of Ni-based superalloy single crystals[J]. J Serbian Chem Soc, 2009,74(1):61.
17Aminorroaya S, Dippenaar R. A novel approach to simulate segregation at the centreline of continuously cast steel using laser-scanning confocal microscopy[J]. J Microscopy, 2007,227(2):87.
18Chen S N, Lai C, Yu H, et al. Effect of cooling rate on non-equilibrium solidified microstructure of Ni-Nb alloy[J]. Rare Metal Mater Eng, 2015,44(6):1539(in Chinese).
陈胜娜, 赖存, 余欢, 等. 冷却速率对Ni-Nb合金非平衡凝固组织的影响[J]. 稀有金属材料与工程, 2015,44(6):1539.
19Cleslak M J, Headley T J. A melting and solidification study of alloy 625[J]. Metall Trans A, 1988,19(9):2319.
20Dong J X, Zhang M C, Zeng Y P. Calculation of Nb segregation behvaior in liquid phase for Nb-rich superalloys[J]. J University of Science and Technology Beijing, 2005,27(2):198(in Chinese).
董建新, 张麦仓, 曾燕屏. 含铌高温合金液相中铌偏聚行为[J]. 北京科技大学学报, 2005, 27(2):198.
21高义民. 金属凝固原理[M]. 西安:西安交通大学出版社, 2007:50.
22Schirra J J, Caless R H, Hatala R W. The effect of laves phase on the mechanical properties of wrought and cast + HIP Inconel 718[C]∥Superalloys, 1991:375.
[1] 董伟, 刘苏磊, 王旭东, 许富民. 脉冲微孔喷射法的应用研究进展[J]. 材料导报, 2025, 39(3): 24020091-9.
[2] 肖嵩, 刘明, 张小龙, 黄艳斐, 王海斗. 等离子喷涂熔滴铺展凝固行为研究现状[J]. 材料导报, 2024, 38(6): 22080031-12.
[3] 马云路, 杨劼人, 刘泽栋, 陈瑞润. TiAl金属间化合物定向技术研究进展[J]. 材料导报, 2024, 38(15): 23100177-12.
[4] 宋志起, 赵旭东, 王军, 胡朝晟, 刘永珍, 麻永林. 脉冲磁场孕育处理下A356铝合金凝固组织的演变规律[J]. 材料导报, 2024, 38(13): 22100215-7.
[5] 王利卿, 凌子涵, 赵占勇, 张震, 白培康. 增材制造Ti-6Al-4V合金晶粒形貌调控研究进展[J]. 材料导报, 2023, 37(22): 22030266-7.
[6] 张磊, 邢志国, 王海斗, 郭伟玲, 李国禄, 黄艳斐, 张执南. 脉冲磁场对合金凝固过程影响的研究进展[J]. 材料导报, 2023, 37(14): 21090053-11.
[7] 张道琦, 张林, 郭晓, 王恩刚. Cu-Ag高强高导合金的研究现状与进展[J]. 材料导报, 2023, 37(13): 21040152-6.
[8] 周涵, 刘亚, 吴长军, 王建华, 苏旭平. 熔体深过冷过共晶铝硅合金的凝固组织研究[J]. 材料导报, 2023, 37(12): 21100123-6.
[9] 刘灵, 杨伟, 吴宗锴, 徐勇, 余欢. 深冷处理对快冷Mg-6Al-1Y合金等温时效析出的影响[J]. 材料导报, 2023, 37(12): 21070188-5.
[10] 赵巍, 花福安, 李建平. 基于机器学习的Laves相生成焓预测研究[J]. 材料导报, 2022, 36(Z1): 21120179-5.
[11] 张朝, 黄太文, 蒲茜, 张家晨, 张军, 苏海军, 郭敏, 刘林. 流态床冷却定向凝固技术研究进展[J]. 材料导报, 2022, 36(7): 20090249-6.
[12] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[13] 雷波, 郝刚领, 李育川, 王金. 冷却速率对CuAlNi形状记忆合金阻尼行为的影响[J]. 材料导报, 2022, 36(24): 21090026-4.
[14] 王妍, 崔春娟, 张凯, 邓力, 刘薇, 刘跃, 赵亚男, 武重洋. 定向凝固金属间化合物的研究进展[J]. 材料导报, 2022, 36(24): 20100245-8.
[15] 刘宇, 张桂芳, 漆鑫, 施哲, 严鹏, 姜琦. 电磁悬浮熔炼金属合金的研究进展:应用和数值模拟[J]. 材料导报, 2022, 36(21): 20080265-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed