Research Progress on Compatibility Between Anode and Electrolyte of Rechargeable Magnesium Batteries
TONG Le1,2, WANG Jingfeng1,2,*, WANG Jinxing1,2, QU Baihua1,2, HUANG Guangsheng1,2, PAN Fusheng1,2
1 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China 2 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
Abstract: Magnesium metal anode has high theoretical volume specific capacity (3 833 mAh·cm-3) and low reduction potential (-2.37 V vs.SHE).As an anode, magnesium has the advantages of high energy density, good safety and low cost.Therefore, rechargeable magnesium batteries (RMBs) are expected to be the new secondary battery system with great development prospects.However, the magnesium anode of RMBs is prone to react with the electrolyte during the charge/discharge process, forming a dense passivation film that hinders the reversible deposition/dissolution of Mg2+, resulting in large polarization and low coulombic efficiency.In addition, the reaction between magnesium anode and common electrolyte may limit the application of some high-performance cathode materials.Hence, in the light of research situation in the compatibility between anode materials and electrolytes, this review summarizes the research progress on anode materials and interface regulation met-hods in RMBs.Besides, the important roles of alloying anode and nano/intercalated anode materials in improving the cycling performance of RMBs are introduced.The performance of artificial electrolyte interphase and solid-state electrolyte to solve the compatibility problem between anode and electrolytes is emphasized.Furthermore, from the perspective of reducing electrolyte side reaction and regulating passivation film, the key research direction and target of improving the compatibility between anode and electrolytes of RMBs are summarized and prospected.
童乐, 王敬丰, 王金星, 瞿佰华, 黄光胜, 潘复生. 可充镁电池负极与电解液相容性的研究进展[J]. 材料导报, 2023, 37(24): 22040273-7.
TONG Le, WANG Jingfeng, WANG Jinxing, QU Baihua, HUANG Guangsheng, PAN Fusheng. Research Progress on Compatibility Between Anode and Electrolyte of Rechargeable Magnesium Batteries. Materials Reports, 2023, 37(24): 22040273-7.
1 Chen H S, Liu C, Xu Y J, et al. Energy Storage Science and Technology, 2021, 10(5), 1477 (in Chinese). 陈海生, 刘畅, 徐玉杰, 等. 储能科学与技术, 2021, 10(5), 1477. 2 Zhu S, Peng Y T, Min Y L, et al. Chemical Industry and Engineering Progress, 2021, 40(9), 4837 (in Chinese). 朱晟, 彭怡婷, 闵宇霖, 等. 化工进展, 2021, 40(9), 4837. 3 Wang T Y, Su D W, Shanmukaraj D, et al. Electrochemical Energy Reviews, 2018, 1(2), 200. 4 Zheng M, Douglas R M, Ka M. Advanced Energy Materials, 2019, 2(2), 115. 5 Lang J H, Jiang C L, Fang Y, et al. Advanced Energy Materials, 2019, 9(29), 1901099. 6 Xu C X, Zhang Y, Zhang N Q, et al. Chemistry-An Asian Journal, 2020, 15(20), 3696. 7 Li Q F, Bjerrum N J. Journal of Power Sources, 2002, 110(1), 1. 8 Li R N, Li Y Q, Zhang R P, et al. Electrochimica Acta, 2021, 369, 137685. 9 Lu Z, Schechter A, Moshkovich M, et al. Journal of Electroanalytical Chemistry, 1999, 466, 203. 10 Attias R, Salama M, Hirsch B, et al. Joule, 2019, 3(1), 27. 11 Wang Y, Sahadeo E, Rubloff G, et al. Journal of Materials Science, 2019, 54, 3671. 12 Chen L, Chen C G, Guo C Z. Chinese Science Bulletin, 2014, 59(17), 1936. 13 Yang R, Yao W J, Tang B, et al. Energy Storage Materials, 2021, 42, 687. 14 Yang Y, Xiong X M, Chen J, et al. Journal of Magnesium and Alloys, 2021, 3(9), 705. 15 Li Z, Yao Y Y, Li B F, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(11), 3192 (in Chinese). 李钊, 姚赢赢, 李博飞, 等. 中国有色金属学报, 2021, 31(11), 3192. 16 Pour N, Gofer Y, Major D T, et al. Journal of the American Chemical Society, 2011, 133(16), 6270. 17 Yang L L, Yang C R, Chen Y W, et al. ACS Applied Materials & Interfaces, 2021, 13(26), 30712. 18 Li Z Y, Diemant T, Meng Z, et al. ACS Applied Materials & Interfaces, 2021, 13(28), 33123. 19 Nam K W, Kim S, Lee S. Nano Letters, 2015, 15(6), 4071. 20 Mao M L, Gao T, Hou S Y, et al. Chemical Society Reviews, 2018, 47(23), 8804. 21 Song J, Noked M, Gillette E. Physical Chemistry Chemical Physics, 2015, 17(7), 5256. 22 Fu Q, Sarapulova A, Trouillet V, et al. Journal of the American Chemical Society, 2019, 141(6), 2305. 23 Yoo H D, Shterenberg I, Gofer Y, et al. Energy & Environmental Science, 2013, 6(8), 2265. 24 Niu J Z, Zhang Z H, Aurbach D. Advanced Energy Materials, 2020, 10(23), 2000697. 25 Liu H, Cheng X B, Jin Z H, et al. EnergyChem, 2020, 1(1), 100003. 26 Xiao J. Science, 2019, 366(6464), 426. 27 Gao X W, Zhou Y N, Han D Z, et al. Joule, 2020, 4(9), 1864. 28 Liu X, Du A B, Guo Z Y, et al. Advanced Materials, 2022, 34(31), 2201886. 29 Davidson R, Verma A, Santos D. ACS Energy Letters, 2018, 4(2), 375. 30 Arthur T S, Singh N, Matsui M. Electrochemistry Communications, 2016, 16(1), 103. 31 Shao Y, Gu M, Li X, et al. Nano Letters, 2014, 14(1), 255. 32 Murgia F, Stievano L, Monconduit L, et al. Journal of Materials Chemistry A, 2015, 3(32), 16478. 33 Singh N, Arthur T S, Ling C, et al. Chemical Communications, 2013, 49(2), 149. 34 Murgia F, Weldekidan E T, Stievano L, et al. Electrochemistry Communications, 2015, 60, 56. 35 Nguyen G T H, Nguyen D T, Song S W. Advanced Materials Interfaces, 2018, 5(22), 14168. 36 Xia X H, Chao D L, Zhang Y Q, et al. Nano Today, 2014, 9(6), 785. 37 Li G Z, Huang B, Pan Z F, et al. Energy & Environmental Science, 2019, 12(7), 2030. 38 Li D J, Yuan Y, Liu J W, et al. Journal of Magnesium and Alloys, 2020, 8(4), 963. 39 Novák P, Imhof R, Haas O. Electrochimica Acta, 1999, 45(1-2), 351. 40 Cao Y, Ahmai S, Ebadi A G, et al. Inorganic Chemistry Communications, 2021, 133, 108888. 41 Ling C, Mizuno F. Physical Chemistry Chemical Physics, 2014, 16(22), 10419. 42 Vessally E, Alkorta I, Ahmadi S, et al. RSC Advances, 2019, 9(2), 853. 43 Cen Y, Dong J R, Zhu T T, et al. Electrochimica Acta, 2021, 397, 139260. 44 Wu N, Lyu Y C, Xiao R J, et al. NPG Asia Materials, 2014, 6, e120. 45 Peled E. Journal of the Electrochemical Society, 1979, 126(12), 2047. 46 Li B, Masse R, Liu C F, et al. Energy Storage Materials, 2019, 22, 96. 47 Liang Z M, Ban C M. Angewandte Chemie International Edition, 2021, 60(20), 11036. 48 Son S B, Gao T, Harvey S P, et al. Nature Chemistry, 2018, 10(5), 532. 49 Li X G, Gao T, Han F D, et al. Advanced Energy Materials, 2018, 8(7), 1701728. 50 Li Y Q, Zuo P J, Li R N, et al. ACS Applied Materials & Interfaces, 2018, 13(21), 24565. 51 Zhang J H, Guan X Z, Lv R J, et al. Energy Storage Materials, 2020, 26, 408. 52 Hassoun J, Scrosati B. Advanced Materials, 2010, 22(45), 5198. 53 Anuara N K, Adnana S B R S, Mohamed N S. Ceramics International, 2014, 40(8), 13719. 54 Knauth P. Solid State Ionics, 2009, 180(14-16), 911. 55 Wang T T, Zhao X D, Liu F F, et al. Journal of Energy Chemistry, 2021, 59, 608. 56 Sheha E, El-Mansy M K. Journal of Power Sources, 2008, 185(2), 1509. 57 Perumal P, Abhilash K P, Sivaraj P, et al. Materials Research Bulletin, 2019, 118, 110490.