Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 21120232-8    https://doi.org/10.11896/cldb.21120232
  无机非金属及其复合材料 |
半导体激光器低热阻液冷热沉研究现状与展望
陈琅1, 刘嘉辰1,2, 张佳晨1, 王贞福1, 王丹1, 李特1,*
1 中国科学院西安光学精密机械研究所瞬态光学与光子国家重点实验室,西安 710119
2 中国科学院大学,北京 100049
Research Status and Prospect of Low Thermal Resistance Liquid-cooled Heatsink Applied in Laser Diode
CHEN Lang1, LIU Jiachen1,2, ZHANG Jiachen1, WANG Zhenfu1, WANG Dan1, LI Te1,*
1 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 10904KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,半导体激光器输出功率持续增加,引发热负载受限问题。热负载使芯片有源区产生温升,进一步影响芯片温度分布,导致半导体激光器(Laser diode,LD)芯片性能逐渐劣化。而对于确定的封装形式,热沉热阻成为控制温升的决定性因素。因此,降低热沉热阻对提升半导体激光器输出能力与光束性质具有重要意义。液冷热沉可以有效降低热阻,本文从液冷热沉材料、液冷热沉结构和液冷冷媒性质三个方面,回顾了近30年LD液冷热沉热阻演变进程,总结了液冷热沉发展过程中热阻的影响因素,进一步探讨了降低热阻的发展方向与应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈琅
刘嘉辰
张佳晨
王贞福
王丹
李特
关键词:  半导体激光器  液冷热沉  热阻  结构  材料  冷媒    
Abstract: In recent decades, the output power of laser diode has been continuously increasing, leading to the restricted problem of thermal loads. The thermal load causes a temperature increment in the active region of the LD chip, which further impacts the chip temperature distribution and leads to a gradual deterioration of the LD bar performance. For a defined package configuration, the thermal resistance of the heatsink becomes a decisive factor in controlling the temperature rise. Therefore, it is important to reduce the thermal resistance of the heatsink in order to improve the output power capability and beam properties of semiconductor lasers. From three aspects:liquid-cooled heatsink materials, liquid-cooled heatsink structures and liquid-cooled refrigerant properties, this paper reviews the evolution of thermal resistance of liquid-cooled heatsinks in the last three decades. We also summarize the factors influencing thermal resistance during the development of liquid-cooled heatsinks, and further discuss the development direction and application prospects of heatsink thermal resistance reduced.
Key words:  laser diode    liquid-cooled heatsink    thermal resistance    structure    material    refrigerant
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  TN248.4  
基金资助: 国家自然科学基金(61504167);陕西省自然科学基金(2022JQ-531;2019ZY-CXPT-03-05;2018JM6010;2015JQ6263);陕西省科技厅人才项目(2017KJXX-72)
通讯作者:  *李特,中国科学院西安光学精密机械研究所研究员、硕士研究生导师。2003年6月本科毕业于吉林大学,2008年6月在中科院长春光机所获博士学位。曾先后在新加坡南洋理工大学和美国里海大学从事博士后研究。2010—2016年,在长春理工大学高功率半导体激光国家重点实验室工作。2016年调转至中国科学院西安光学精密机械研究所工作至今。目前,主要从事先进半导体芯片与器件研究工作。主持国家级和省部级科研项目10余项,发表学术论文60余篇,拥有两项授权发明专利。lite@opt.ac.cn   
作者简介:  陈琅,中国科学院西安光学精密机械研究所工程师。2013年海南大学材料与化工学院高分子材料与工程专业本科毕业。2016 年海南大学材料与化工学院材料工程专业硕士毕业后至比亚迪全球总部(深圳)研究院任高级研发工程师职务,2020年进入中国科学院西安光学精密机械研究所工作至今。目前,主要从事芯片散热封装、器件散热理论与实验、芯片热失效机理方面的研究工作。主持或参与省部级以上项目5项,发表论文4篇,申请发明专利12项,4项已授权。
引用本文:    
陈琅, 刘嘉辰, 张佳晨, 王贞福, 王丹, 李特. 半导体激光器低热阻液冷热沉研究现状与展望[J]. 材料导报, 2023, 37(10): 21120232-8.
CHEN Lang, LIU Jiachen, ZHANG Jiachen, WANG Zhenfu, WANG Dan, LI Te. Research Status and Prospect of Low Thermal Resistance Liquid-cooled Heatsink Applied in Laser Diode. Materials Reports, 2023, 37(10): 21120232-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120232  或          http://www.mater-rep.com/CN/Y2023/V37/I10/21120232
1 Wölz M, Pietrzak A, Kindsvater A, et al. High Power Laser Science and Engineering, 2016, 4(14), 1.
2 Caird J A, Agrawal V, Bayramian A, et al. Fusion Science and Technology, 2009, 56(2), 607.
3 Pandey R, Merchen D, Stapleton D, et al. In:Conference on Laser Technology for Defense and Security VIII. Baltimore, Maryland, USA, 2012, pp.83810G-1.
4 Extance A. Nature, 2015, 521(7553), 408.
5 Zeng P, Chen J, Liao Y, et al. Infrared and Laser Engineering, 2020, 49(S01), 20190352-1 (in Chinese).
曾鹏, 陈军, 廖燕, 等. 红外与激光工程, 2020, 49(S01), 20190352-1.
6 Wu S H. Military Abstract 3, 2020(5), 40(in Chinese).
伍尚慧. 军事文摘3, 2020(5), 40.
7 Yang J B, Zong S G, Chen L F. Laser & Infrared, 2021, 51(6), 695(in Chinese).
杨剑波, 宗思光, 陈利斐. 激光与红外, 2021, 51(6), 695.
8 Cai Z, Ning T, Shang L. Scientific Reports, 2017, 7(1), 1.
9 Siders C W. In:The 7th Advanced Lasers and Photon Sources (ALPS2018). Yokohama, Japan, 2018, pp.1.
10 Yoshida H, Yamashita Y, Kuwabara M, et al. Nature Photonics, 2008, 2(9), 551.
11 Kim J, Choi U, Pyeon J, et al. Scientific Reports, 2018, 8(1), 1.
12 Kouomou Y C, Woafo P. Optics Communications, 2003, 223(4-6), 283.
13 Chen Y A, Zhang Q, Chen T Y, et al. Nature, 2019, 589(7841), 214.
14 Liu S, Jiang N, Zhao A, et al. IEEE Access, 2020, 8, 11872.
15 Spitz O, Herdt A, Wu J, et al. Nature Communications, 2021, 12(1), 1.
16 Piprek J. Optical & Quantum Electronics, 2013, 45(7), 581.
17 Kaul T, Erbert G, Klehr A, et al. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6), 1501910-1.
18 Kanskar M, Chen Z, Dong W, et al. Journal of Photonics for Energy, 2017, 7(1), 016003.
19 Song Y F, Wang Z F, Li T, et al. Acta Physica Sinica, 2017, 66(10), 112(in Chinese).
宋云菲, 王贞福, 李特, 等. 物理学报, 2017, 66(10), 112.
20 Liu H, Wang M P, Nie Z Q, et al. Acta Photonical Sinica, 2019, 48(9), 0914002-1(in Chinese).
刘晖, 王明培, 聂志强, 等. 光子学报, 2019, 48(9), 0914002-1.
21 Chang Y D, Wang Z F, Zhang X Y, et al. Chinese Journal of Luminescence, 2021, 42(7), 1041(in Chinese).
常奕栋, 王贞福, 张晓颖, 等. 发光学报, 2021, 42(7), 1041.
22 Zhang P, Kim D S, Han B. Applied Optics, 2017, 56(20), 5590.
23 Bezotosnyi V V, Gordeev V P, Krokhin O N, et al. Quantum Electronics, 2018, 48(2), 115.
24 Wu D H. Study on thermal design for high power semiconductor lasers and its impact on the spectrum. Ph. D. Thesis, Chinese Academy of Sciences (Xi'an Institute of Optics and Precision Mechanics), 2019 (in Chinese).
吴的海. 高功率半导体激光器热设计及其对光谱特性影响的研究. 博士学位论文, 中国科学院大学(中国科学院西安光学精密机械研究所), 2019.
25 Fritz M A, Cassidy D T. Microelectronics Reliability, 2004, 44(5), 787.
26 Martín-Martín A, Avella M, Iñiguez M P, et al. Journal of Applied Physics, 2009, 106(7), 5.
27 Talbot C L, Friese M E J, Wang D, et al. Applied Optics, 2005, 44(29), 6264.
28 Lu Y, Nie Z Q, Chen T Q, et al. Acta Photonical Sinica, 2017, 46(9), 189 (in Chinese).
鲁瑶, 聂志强, 陈天奇, 等. 光子学报, 2017, 46(9), 189.
29 Nie Z, Lu Y, Chen T, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8(5), 818.
30 Orton J W. Optica Acta International Journal of Optics, 1992, 39(8), 1799.
31 Treusch G, Srinivasan R, Brown D, et al. In:Conference on High-Power Diode Laser Technology and Applications III. San Jose, California, USA, 2005, pp.132.
32 Kissel H, Seibold G, Biesenbach J, et al. In:Conference on High-Power Diode Laser Technology and Applications VI. San Jose, California, USA, 2008, pp.687603-1.
33 Deng Z, Shen J, Dai W, et al. Journal of Engineering Thermophysics, 2017, 38(7), 1422(in Chinese).
邓增, 沈俊, 戴巍, 等. 工程热物理学报, 2017, 38(7), 1422.
34 Fan S Q, Laser Journal, 2018, 39(2), 14 (in Chinese).
范嗣强. 激光杂志, 2018, 39(2), 14.
35 Liu R K, Wang C C, Li S S, et al. Electro-optic Technology Application, 2019, 34(6), 1(in Chinese).
刘瑞科, 王超臣, 李森森, 等. 光电技术应用, 2019, 34(6), 1.
36 Kim K J, Han B, Bar-Cohen A. Applied Physics B, 2021, 127(3), 1.
37 Kaul T, Erbert G, Maabdorf A, et al. Semiconductor Science & Technology, 2018, 33(3), 1.
38 Kissel H, Seibold G, Biesenbach J, et al. In:Conference on High-Power Diode Laser Technology and Applications VI. San Jose, California, USA, 2008, pp.687618-1.
39 Mundinger D, Beach R, Benett W, et al. Applied Physics Letters, 1988, 53(12), 1030.
40 Beach R, Mundinger D, Benett W, et al. Applied Physics Letters, 1990, 56(21), 2065.
41 Mundinger D, Beach R, Benett W, et al. Applied Physics Letters, 1990, 57(21), 2172.
42 Beach R, Benett W, Freitas B L, et al. IEEE journal of quantum electronics, 1992, 28(4), 966.
43 Benett W, Freitas B L, Ciarlo D R, et al. In:2nd High Heat Flux Engineering Conference. San Diego, CA, 1993, pp.98.
44 Tuckerman D B, Pease R F W. Electron Device Letters, 1981, 5(2), 126.
45 Hava S, Sequeira H B, Hunsperger R G. Journal of Applied Physics, 1985, 58(5), 1727.
46 Erp R V, Kampitsis G, Matioli E. In:34th Annual IEEE Applied Power Electronics Conference and Exposition (APEC). Anaheim, California, USA, 2019, pp.1383.
47 Krause V K, Treusch H, Loosen P, et al. In:Conference on Laser Diode Technology and Applications VI. Los Angeles, California, USA, 1994, pp.351.
48 Feeler R, Junghans J, Kemner G, et al. In:Conference on High-Power Diode Laser Technology and Applications VI. Bellingham, Washington, 2008, pp.351.
49 Wu D, Za H C, Liu X. Applied Optics, 2019, 58(8), 1966.
50 Zhang H, Chen T, Zhang P, et al. Applied Optics, 2018, 57(28), 8407.
51 Lorenzen D, Hennig P, Schroeder M, et al. United States Patent, US7801190, 2010.
52 Wölz M, Pietrzak A, Kindsvater A, et al. In:Conference on High-Power, High-Energy, and High-Intensity Laser Technology II. Prague, Czech Republic, 2015, pp.95130E-1.
53 Wölz M, Zorn M, Pietrzak A, et al. In:Conference on Components and Packaging for Laser Systems. San Francisco, California, USA, 2015, pp.934608-1.
54 Kindsvater A, Schröder M, Werner E, et al. In:Conference on High-Power Diode Laser Technology and Applications XIV. San Francisco, California, USA, 2016, pp.97330M-1.
55 Wölz M, Spiess C, Vetterlein J, et al. In:Conference on Components and Packaging for Laser Systems V. San Francisco, California, USA, 2019, pp.1089905-1.
56 Fassbender W, Kissel H, Lotz J, et al. In:Conference on Components and Packaging for Laser Systems III. San Francisco, California, USA, 2017, pp.1008509-1.
57 Crump P, Karow M M, Knigge S, et al. In:Conference on High-Power Diode Laser Technology XV. San Francisco, California, USA, 2017, pp.100860E-1.
58 Fassbender W, Lotz J, Kissel H, et al. In:Conference on Components and Packaging for Laser Systems IV. San Francisco, California, USA, 2018, pp.105130M-1.
59 Chin A K, Manni J G, Chin R H, et al. In:Conference on High-Power Diode Laser Technology and Applications XI. San Francisco, California, USA, 2013, pp.1.
60 Zhao L, Song P X, Zhang Y J, et al. Materials Reports A:Review Papers, 2018, 32(6), 1842(in Chinese).
赵龙, 宋平新, 张迎九, 等. 材料导报:综述篇, 2018, 32(6), 1842.
61 Kan H, Miyajima H, Kanzaki T, et al. In:Conference on Advanced High-Power Lasers. Osaka, Japan, 2000, pp.66.
62 Miyajima H, Kan H, Kanzaki T, et al. Optics Letters, 2004, 29(3), 304.
63 Knapczyk M T, Jacob J H, Eppich H, et al. In:Conference on High-Power Diode Laser Technology and Applications IX. San Francisco, California, USA, 2011, pp.79180F-1.
64 Chin A K, Knapczyk M T, Jacob J H, et al. In:Conference on High-Power Diode Laser Technology and Applications IX. Bellingham, Was-hington, USA, 2011, pp.79180L-1.
65 Dix J, Jokar A, Martinsen R. In:ASME 2007 International Mechanical Engineering Congress and Exposition. Seattle, Washington, USA, 2007, pp.87.
66 Dix J, Jokar A, Martinsen R. In:6th International Conference on Nanochannels, Microchannels and Minichannels. Darmstadt, Germany, 2008, pp.1.
67 Dix J, Jokar A. Applied Thermal Engineering, 2010, 30, 948.
68 Farsad E, Abbasi S P, Zabihi M S. Journal of Thermal Science and Engineering Applications, 2014, 6(2), 1.
69 Liu G, Wang W, Liu L, et al. In:6th International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)-Optoelectronic Materials and Devices for Sensing, Imaging, and Solar Energy. Xiamen, China, 2012, pp.841910-1.
70 Deng Z, Shen J, Dai W, et al. Applied Thermal Engineering, 2019, 162, 1.
71 Deng Z, Shen J, Gong W, et al. International Journal of Heat and Mass Transfer, 2019, 134, 41.
72 Deng Z, Shen J. Advances in Heat Transfer and Thermal Engineering, 2021, 162, 609.
73 Liu G, Liu Y, Wang C, et al. In:International Symposium on Optoelectronic Technology and Application (IPTA)-Development and Application of High Power Lasers. Beijing, China, 2014, pp.92940O-1.
74 Muhammad A, Selvakumar D, Wu J. International Journal of Heat and Mass Transfer, 2019, 150, 119261.
75 Muhammad A, Selvakumar D, Iranzo A, et al. Journal of Thermal Analysis and Calorimetry, 2020, 141(1), 289.
76 Effendi N S, Kim K J. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(11), 1759.
77 Kim B G, Yu D I, Lee J, et al. Journal of Advanced Marine Engineering and Technology, 2020, 44(2), 111.
78 Effendi N S, Park J S, Kim B G, et al. In:IEEE 21st Electronics Packaging Technology Conference (EPTC). Singapore, Singapore, 2019. pp.413.
79 Effendi N S, Park J S, Kim B G, et al. In:IEEE 21st Electronics Packaging Technology Conference (EPTC). Singapore, Singapore, 2019, pp.436.
80 Naidich J V, Chuvashov J N. Journal of Materials Science, 1983, 18(7), 2071.
81 Liu T, Sen P, Kim C. In:23rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2010). Hong Kong, China, 2010, pp.560.
82 Kramer R K, Boley J W, Stone H A, et al. Langmuir, 2014, 30(2), 533.
83 Gao Y, Bando Y. Applied Physics Letters, 2002, 81(21), 3966.
84 Gao Y, Bando Y. Nature, 2002, 415(6872), 599.
85 Gao Y, Bando Y, Liu Z, et al. Applied Physics Letters, 2003, 83(14), 2913.
86 Zhang R, Hodes M, Lower N, et al. IEEE Transactions on Components Packaging & Manufacturing Technology, 2015, 5(6), 762.
87 Yang X, Tan S, Liu J. International Journal of Heat and Mass Transfer, 2016, 100, 899.
88 Zhu J Y, Tang S, Khoshmanesh K, et al. ACS Applied Materials & Interfaces, 2016, 8(3), 2173.
89 Ancharov A I, Grigorieva T F, Tsybulya S V, et al. Inorganic Materials, 2006, 42(10), 1058.
90 Ancharov A I, Grigoriyeva T F, Tsybulya S V, et al. Russian Metallurgy Metally, 2006, 2006(2), 143.
91 Ancharov A I, Grigoryeva T F, Barinova A P, et al. Russian Metallurgy Metally, 2009, 2008(6), 475.
92 Grigoreva T F, Ancharov A I, Barinova A P, et al. Russian Journal of Applied Chemistry, 2009, 82(5), 779.
93 Grigoreva T F, Ancharov A I, Barinova A P, et al. Physics of Metals and Metallography, 2009, 107(5), 457.
94 Grigoreva T F, Ancharov A I, Kovaleva S A, et al. Russian Journal of Applied Chemistry, 2010, 83(4), 616.
95 Grigoreva T F, Ancharov A I, Manzyrykchy K B, et al. Russian Journal of Inorganic Chemistry, 2010, 55(8), 1275.
96 Liu S Q, Qu D D, Mcdonald S D, et al. In:Electronic Packaging Interconnect Technology Symposium. Fukuoka, Japan, 2018, pp.3.
97 Wang H, Peterson R B. IEEE Transactions on Components and Packaging Technologies, 2010, 33(4), 784.
98 Corcione M. Energy Conversion and Management, 2011, 52(1), 789.
99 Farsad E, Abbasi S P, Zabihi M S, et al. Heat and Mass Transfer, 2011, 47(4), 479.
100 Ijam A, Saidur R, Ganesan P. International Communications in Heat and Mass Transfer, 2012, 39(8), 1188.
101 Wang T, Luo Z Y, Guo S S, et al. Journal of Zhejiang University (Engineering Science), 2007, 41(3), 514(in Chinese).
王涛, 骆仲泱, 郭顺松, 等. 浙江大学学报(工学版), 2007, 41(3), 514.
102 Razzaghi D, Pirlar M A, Ghamsari M S. Journal of Modern Optics, 2018, 65(20), 1.
103 Xu H, Chang C, Zhang J, et al. Experimental Heat Transfer, 2020, 35(2), 183.
104 Jung S Y, Park H. International Journal of Heat and Mass Transfer, 2021, 179, 1.
105 Lin L, Wang X D, Wang Z H. Journal of Basic Science and Enginee-ring, 2012, 20(S1), 169.
林林, 王晓东, 王振华. 应用基础与工程科学学报, 2012, 20(S1), 169.
106 Ali H, Babar H, Shah T, et al. Applied Sciences, 2018, 8(4), 1.
107 Qu W, Mudawar I. International Journal of Heat and Mass Transfer, 2003, 46(15), 2737.
108 Sung M K, Mudawar I. International Journal of Heat and Mass Transfer, 2008, 51(15-16), 3882.
109 Hsieh S, Fan T, Tsai H. International Journal of Heat and Mass Transfer, 2004, 47(26), 5703.
110 Bostanci H, Rini D P, Kizito J P, et al. Journal of Heat Transfer, 2009, 131(7), 071401-1.
111 Muhammad A, Selvakumar D, Wu J. International Journal of Heat and Mass Transfer, 2020, 150, 119261.
112 Acikalin T, Schroeder C. In:14th Inter Society Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, FL, 2014, pp.673.
113 Vetrovec J. In:Conference on High-Power Diode Laser Technology and Applications VI Bellingham. San Jose, California, USA, 2008, pp.687603.
114 Gould K, Cai S Q, Neft C, et al. IEEE Transactions on Power Electro-nics, 2015, 30(6), 2975.
115 Wei T W, Oprins H, Cherman V, et al. IEEE Transactions on Power Electronics, 2019, 34(7), 6601.
116 Van Erp R, Soleimanzadeh R, Nela L, et al. Nature, 2020, 585(7824), 211.
117 Nela L, Van Erp R, Perera N, et al. IEEE Electron Device Letters, 2021, 42(11), 1642.
[1] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[2] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[3] 魏宇, 姜丰, 张雯. 钙钛矿基气敏传感材料研究进展[J]. 材料导报, 2023, 37(9): 21060043-9.
[4] 杨平安, 刘中邦, 李锐, 屈正微, 黄鑫, 寿梦杰, 杨健健, 熊雨婷. 电阻式柔性触觉传感器的研究进展[J]. 材料导报, 2023, 37(9): 21060169-14.
[5] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[6] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[7] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[8] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[9] 魏亚洲, 刘一凡, 李翔龙. 电火花放电法合成Cu0.81Ni0.19合金的性能研究[J]. 材料导报, 2023, 37(9): 21080057-6.
[10] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[11] 董煜, 刘跃军, 崔玲娜, 刘小超, 范淑红, 李霞. 拉伸对PA6/PET/AX8900薄膜直线易撕裂性能的影响[J]. 材料导报, 2023, 37(9): 21050030-8.
[12] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[13] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[14] 王鹏飞, 梁明, 贾佳林, 马小波, 徐晓燕. 脉冲磁体用高强高导Cu-Nb复合线材的研究进展[J]. 材料导报, 2023, 37(8): 21120237-8.
[15] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed