Research Status and Prospect of Low Thermal Resistance Liquid-cooled Heatsink Applied in Laser Diode
CHEN Lang1, LIU Jiachen1,2, ZHANG Jiachen1, WANG Zhenfu1, WANG Dan1, LI Te1,*
1 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China 2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: In recent decades, the output power of laser diode has been continuously increasing, leading to the restricted problem of thermal loads. The thermal load causes a temperature increment in the active region of the LD chip, which further impacts the chip temperature distribution and leads to a gradual deterioration of the LD bar performance. For a defined package configuration, the thermal resistance of the heatsink becomes a decisive factor in controlling the temperature rise. Therefore, it is important to reduce the thermal resistance of the heatsink in order to improve the output power capability and beam properties of semiconductor lasers. From three aspects:liquid-cooled heatsink materials, liquid-cooled heatsink structures and liquid-cooled refrigerant properties, this paper reviews the evolution of thermal resistance of liquid-cooled heatsinks in the last three decades. We also summarize the factors influencing thermal resistance during the development of liquid-cooled heatsinks, and further discuss the development direction and application prospects of heatsink thermal resistance reduced.
陈琅, 刘嘉辰, 张佳晨, 王贞福, 王丹, 李特. 半导体激光器低热阻液冷热沉研究现状与展望[J]. 材料导报, 2023, 37(10): 21120232-8.
CHEN Lang, LIU Jiachen, ZHANG Jiachen, WANG Zhenfu, WANG Dan, LI Te. Research Status and Prospect of Low Thermal Resistance Liquid-cooled Heatsink Applied in Laser Diode. Materials Reports, 2023, 37(10): 21120232-8.
1 Wölz M, Pietrzak A, Kindsvater A, et al. High Power Laser Science and Engineering, 2016, 4(14), 1. 2 Caird J A, Agrawal V, Bayramian A, et al. Fusion Science and Technology, 2009, 56(2), 607. 3 Pandey R, Merchen D, Stapleton D, et al. In:Conference on Laser Technology for Defense and Security VIII. Baltimore, Maryland, USA, 2012, pp.83810G-1. 4 Extance A. Nature, 2015, 521(7553), 408. 5 Zeng P, Chen J, Liao Y, et al. Infrared and Laser Engineering, 2020, 49(S01), 20190352-1 (in Chinese). 曾鹏, 陈军, 廖燕, 等. 红外与激光工程, 2020, 49(S01), 20190352-1. 6 Wu S H. Military Abstract 3, 2020(5), 40(in Chinese). 伍尚慧. 军事文摘3, 2020(5), 40. 7 Yang J B, Zong S G, Chen L F. Laser & Infrared, 2021, 51(6), 695(in Chinese). 杨剑波, 宗思光, 陈利斐. 激光与红外, 2021, 51(6), 695. 8 Cai Z, Ning T, Shang L. Scientific Reports, 2017, 7(1), 1. 9 Siders C W. In:The 7th Advanced Lasers and Photon Sources (ALPS2018). Yokohama, Japan, 2018, pp.1. 10 Yoshida H, Yamashita Y, Kuwabara M, et al. Nature Photonics, 2008, 2(9), 551. 11 Kim J, Choi U, Pyeon J, et al. Scientific Reports, 2018, 8(1), 1. 12 Kouomou Y C, Woafo P. Optics Communications, 2003, 223(4-6), 283. 13 Chen Y A, Zhang Q, Chen T Y, et al. Nature, 2019, 589(7841), 214. 14 Liu S, Jiang N, Zhao A, et al. IEEE Access, 2020, 8, 11872. 15 Spitz O, Herdt A, Wu J, et al. Nature Communications, 2021, 12(1), 1. 16 Piprek J. Optical & Quantum Electronics, 2013, 45(7), 581. 17 Kaul T, Erbert G, Klehr A, et al. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6), 1501910-1. 18 Kanskar M, Chen Z, Dong W, et al. Journal of Photonics for Energy, 2017, 7(1), 016003. 19 Song Y F, Wang Z F, Li T, et al. Acta Physica Sinica, 2017, 66(10), 112(in Chinese). 宋云菲, 王贞福, 李特, 等. 物理学报, 2017, 66(10), 112. 20 Liu H, Wang M P, Nie Z Q, et al. Acta Photonical Sinica, 2019, 48(9), 0914002-1(in Chinese). 刘晖, 王明培, 聂志强, 等. 光子学报, 2019, 48(9), 0914002-1. 21 Chang Y D, Wang Z F, Zhang X Y, et al. Chinese Journal of Luminescence, 2021, 42(7), 1041(in Chinese). 常奕栋, 王贞福, 张晓颖, 等. 发光学报, 2021, 42(7), 1041. 22 Zhang P, Kim D S, Han B. Applied Optics, 2017, 56(20), 5590. 23 Bezotosnyi V V, Gordeev V P, Krokhin O N, et al. Quantum Electronics, 2018, 48(2), 115. 24 Wu D H. Study on thermal design for high power semiconductor lasers and its impact on the spectrum. Ph. D. Thesis, Chinese Academy of Sciences (Xi'an Institute of Optics and Precision Mechanics), 2019 (in Chinese). 吴的海. 高功率半导体激光器热设计及其对光谱特性影响的研究. 博士学位论文, 中国科学院大学(中国科学院西安光学精密机械研究所), 2019. 25 Fritz M A, Cassidy D T. Microelectronics Reliability, 2004, 44(5), 787. 26 Martín-Martín A, Avella M, Iñiguez M P, et al. Journal of Applied Physics, 2009, 106(7), 5. 27 Talbot C L, Friese M E J, Wang D, et al. Applied Optics, 2005, 44(29), 6264. 28 Lu Y, Nie Z Q, Chen T Q, et al. Acta Photonical Sinica, 2017, 46(9), 189 (in Chinese). 鲁瑶, 聂志强, 陈天奇, 等. 光子学报, 2017, 46(9), 189. 29 Nie Z, Lu Y, Chen T, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8(5), 818. 30 Orton J W. Optica Acta International Journal of Optics, 1992, 39(8), 1799. 31 Treusch G, Srinivasan R, Brown D, et al. In:Conference on High-Power Diode Laser Technology and Applications III. San Jose, California, USA, 2005, pp.132. 32 Kissel H, Seibold G, Biesenbach J, et al. In:Conference on High-Power Diode Laser Technology and Applications VI. San Jose, California, USA, 2008, pp.687603-1. 33 Deng Z, Shen J, Dai W, et al. Journal of Engineering Thermophysics, 2017, 38(7), 1422(in Chinese). 邓增, 沈俊, 戴巍, 等. 工程热物理学报, 2017, 38(7), 1422. 34 Fan S Q, Laser Journal, 2018, 39(2), 14 (in Chinese). 范嗣强. 激光杂志, 2018, 39(2), 14. 35 Liu R K, Wang C C, Li S S, et al. Electro-optic Technology Application, 2019, 34(6), 1(in Chinese). 刘瑞科, 王超臣, 李森森, 等. 光电技术应用, 2019, 34(6), 1. 36 Kim K J, Han B, Bar-Cohen A. Applied Physics B, 2021, 127(3), 1. 37 Kaul T, Erbert G, Maabdorf A, et al. Semiconductor Science & Technology, 2018, 33(3), 1. 38 Kissel H, Seibold G, Biesenbach J, et al. In:Conference on High-Power Diode Laser Technology and Applications VI. San Jose, California, USA, 2008, pp.687618-1. 39 Mundinger D, Beach R, Benett W, et al. Applied Physics Letters, 1988, 53(12), 1030. 40 Beach R, Mundinger D, Benett W, et al. Applied Physics Letters, 1990, 56(21), 2065. 41 Mundinger D, Beach R, Benett W, et al. Applied Physics Letters, 1990, 57(21), 2172. 42 Beach R, Benett W, Freitas B L, et al. IEEE journal of quantum electronics, 1992, 28(4), 966. 43 Benett W, Freitas B L, Ciarlo D R, et al. In:2nd High Heat Flux Engineering Conference. San Diego, CA, 1993, pp.98. 44 Tuckerman D B, Pease R F W. Electron Device Letters, 1981, 5(2), 126. 45 Hava S, Sequeira H B, Hunsperger R G. Journal of Applied Physics, 1985, 58(5), 1727. 46 Erp R V, Kampitsis G, Matioli E. In:34th Annual IEEE Applied Power Electronics Conference and Exposition (APEC). Anaheim, California, USA, 2019, pp.1383. 47 Krause V K, Treusch H, Loosen P, et al. In:Conference on Laser Diode Technology and Applications VI. Los Angeles, California, USA, 1994, pp.351. 48 Feeler R, Junghans J, Kemner G, et al. In:Conference on High-Power Diode Laser Technology and Applications VI. Bellingham, Washington, 2008, pp.351. 49 Wu D, Za H C, Liu X. Applied Optics, 2019, 58(8), 1966. 50 Zhang H, Chen T, Zhang P, et al. Applied Optics, 2018, 57(28), 8407. 51 Lorenzen D, Hennig P, Schroeder M, et al. United States Patent, US7801190, 2010. 52 Wölz M, Pietrzak A, Kindsvater A, et al. In:Conference on High-Power, High-Energy, and High-Intensity Laser Technology II. Prague, Czech Republic, 2015, pp.95130E-1. 53 Wölz M, Zorn M, Pietrzak A, et al. In:Conference on Components and Packaging for Laser Systems. San Francisco, California, USA, 2015, pp.934608-1. 54 Kindsvater A, Schröder M, Werner E, et al. In:Conference on High-Power Diode Laser Technology and Applications XIV. San Francisco, California, USA, 2016, pp.97330M-1. 55 Wölz M, Spiess C, Vetterlein J, et al. In:Conference on Components and Packaging for Laser Systems V. San Francisco, California, USA, 2019, pp.1089905-1. 56 Fassbender W, Kissel H, Lotz J, et al. In:Conference on Components and Packaging for Laser Systems III. San Francisco, California, USA, 2017, pp.1008509-1. 57 Crump P, Karow M M, Knigge S, et al. In:Conference on High-Power Diode Laser Technology XV. San Francisco, California, USA, 2017, pp.100860E-1. 58 Fassbender W, Lotz J, Kissel H, et al. In:Conference on Components and Packaging for Laser Systems IV. San Francisco, California, USA, 2018, pp.105130M-1. 59 Chin A K, Manni J G, Chin R H, et al. In:Conference on High-Power Diode Laser Technology and Applications XI. San Francisco, California, USA, 2013, pp.1. 60 Zhao L, Song P X, Zhang Y J, et al. Materials Reports A:Review Papers, 2018, 32(6), 1842(in Chinese). 赵龙, 宋平新, 张迎九, 等. 材料导报:综述篇, 2018, 32(6), 1842. 61 Kan H, Miyajima H, Kanzaki T, et al. In:Conference on Advanced High-Power Lasers. Osaka, Japan, 2000, pp.66. 62 Miyajima H, Kan H, Kanzaki T, et al. Optics Letters, 2004, 29(3), 304. 63 Knapczyk M T, Jacob J H, Eppich H, et al. In:Conference on High-Power Diode Laser Technology and Applications IX. San Francisco, California, USA, 2011, pp.79180F-1. 64 Chin A K, Knapczyk M T, Jacob J H, et al. In:Conference on High-Power Diode Laser Technology and Applications IX. Bellingham, Was-hington, USA, 2011, pp.79180L-1. 65 Dix J, Jokar A, Martinsen R. In:ASME 2007 International Mechanical Engineering Congress and Exposition. Seattle, Washington, USA, 2007, pp.87. 66 Dix J, Jokar A, Martinsen R. In:6th International Conference on Nanochannels, Microchannels and Minichannels. Darmstadt, Germany, 2008, pp.1. 67 Dix J, Jokar A. Applied Thermal Engineering, 2010, 30, 948. 68 Farsad E, Abbasi S P, Zabihi M S. Journal of Thermal Science and Engineering Applications, 2014, 6(2), 1. 69 Liu G, Wang W, Liu L, et al. In:6th International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)-Optoelectronic Materials and Devices for Sensing, Imaging, and Solar Energy. Xiamen, China, 2012, pp.841910-1. 70 Deng Z, Shen J, Dai W, et al. Applied Thermal Engineering, 2019, 162, 1. 71 Deng Z, Shen J, Gong W, et al. International Journal of Heat and Mass Transfer, 2019, 134, 41. 72 Deng Z, Shen J. Advances in Heat Transfer and Thermal Engineering, 2021, 162, 609. 73 Liu G, Liu Y, Wang C, et al. In:International Symposium on Optoelectronic Technology and Application (IPTA)-Development and Application of High Power Lasers. Beijing, China, 2014, pp.92940O-1. 74 Muhammad A, Selvakumar D, Wu J. International Journal of Heat and Mass Transfer, 2019, 150, 119261. 75 Muhammad A, Selvakumar D, Iranzo A, et al. Journal of Thermal Analysis and Calorimetry, 2020, 141(1), 289. 76 Effendi N S, Kim K J. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(11), 1759. 77 Kim B G, Yu D I, Lee J, et al. Journal of Advanced Marine Engineering and Technology, 2020, 44(2), 111. 78 Effendi N S, Park J S, Kim B G, et al. In:IEEE 21st Electronics Packaging Technology Conference (EPTC). Singapore, Singapore, 2019. pp.413. 79 Effendi N S, Park J S, Kim B G, et al. In:IEEE 21st Electronics Packaging Technology Conference (EPTC). Singapore, Singapore, 2019, pp.436. 80 Naidich J V, Chuvashov J N. Journal of Materials Science, 1983, 18(7), 2071. 81 Liu T, Sen P, Kim C. In:23rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2010). Hong Kong, China, 2010, pp.560. 82 Kramer R K, Boley J W, Stone H A, et al. Langmuir, 2014, 30(2), 533. 83 Gao Y, Bando Y. Applied Physics Letters, 2002, 81(21), 3966. 84 Gao Y, Bando Y. Nature, 2002, 415(6872), 599. 85 Gao Y, Bando Y, Liu Z, et al. Applied Physics Letters, 2003, 83(14), 2913. 86 Zhang R, Hodes M, Lower N, et al. IEEE Transactions on Components Packaging & Manufacturing Technology, 2015, 5(6), 762. 87 Yang X, Tan S, Liu J. International Journal of Heat and Mass Transfer, 2016, 100, 899. 88 Zhu J Y, Tang S, Khoshmanesh K, et al. ACS Applied Materials & Interfaces, 2016, 8(3), 2173. 89 Ancharov A I, Grigorieva T F, Tsybulya S V, et al. Inorganic Materials, 2006, 42(10), 1058. 90 Ancharov A I, Grigoriyeva T F, Tsybulya S V, et al. Russian Metallurgy Metally, 2006, 2006(2), 143. 91 Ancharov A I, Grigoryeva T F, Barinova A P, et al. Russian Metallurgy Metally, 2009, 2008(6), 475. 92 Grigoreva T F, Ancharov A I, Barinova A P, et al. Russian Journal of Applied Chemistry, 2009, 82(5), 779. 93 Grigoreva T F, Ancharov A I, Barinova A P, et al. Physics of Metals and Metallography, 2009, 107(5), 457. 94 Grigoreva T F, Ancharov A I, Kovaleva S A, et al. Russian Journal of Applied Chemistry, 2010, 83(4), 616. 95 Grigoreva T F, Ancharov A I, Manzyrykchy K B, et al. Russian Journal of Inorganic Chemistry, 2010, 55(8), 1275. 96 Liu S Q, Qu D D, Mcdonald S D, et al. In:Electronic Packaging Interconnect Technology Symposium. Fukuoka, Japan, 2018, pp.3. 97 Wang H, Peterson R B. IEEE Transactions on Components and Packaging Technologies, 2010, 33(4), 784. 98 Corcione M. Energy Conversion and Management, 2011, 52(1), 789. 99 Farsad E, Abbasi S P, Zabihi M S, et al. Heat and Mass Transfer, 2011, 47(4), 479. 100 Ijam A, Saidur R, Ganesan P. International Communications in Heat and Mass Transfer, 2012, 39(8), 1188. 101 Wang T, Luo Z Y, Guo S S, et al. Journal of Zhejiang University (Engineering Science), 2007, 41(3), 514(in Chinese). 王涛, 骆仲泱, 郭顺松, 等. 浙江大学学报(工学版), 2007, 41(3), 514. 102 Razzaghi D, Pirlar M A, Ghamsari M S. Journal of Modern Optics, 2018, 65(20), 1. 103 Xu H, Chang C, Zhang J, et al. Experimental Heat Transfer, 2020, 35(2), 183. 104 Jung S Y, Park H. International Journal of Heat and Mass Transfer, 2021, 179, 1. 105 Lin L, Wang X D, Wang Z H. Journal of Basic Science and Enginee-ring, 2012, 20(S1), 169. 林林, 王晓东, 王振华. 应用基础与工程科学学报, 2012, 20(S1), 169. 106 Ali H, Babar H, Shah T, et al. Applied Sciences, 2018, 8(4), 1. 107 Qu W, Mudawar I. International Journal of Heat and Mass Transfer, 2003, 46(15), 2737. 108 Sung M K, Mudawar I. International Journal of Heat and Mass Transfer, 2008, 51(15-16), 3882. 109 Hsieh S, Fan T, Tsai H. International Journal of Heat and Mass Transfer, 2004, 47(26), 5703. 110 Bostanci H, Rini D P, Kizito J P, et al. Journal of Heat Transfer, 2009, 131(7), 071401-1. 111 Muhammad A, Selvakumar D, Wu J. International Journal of Heat and Mass Transfer, 2020, 150, 119261. 112 Acikalin T, Schroeder C. In:14th Inter Society Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, FL, 2014, pp.673. 113 Vetrovec J. In:Conference on High-Power Diode Laser Technology and Applications VI Bellingham. San Jose, California, USA, 2008, pp.687603. 114 Gould K, Cai S Q, Neft C, et al. IEEE Transactions on Power Electro-nics, 2015, 30(6), 2975. 115 Wei T W, Oprins H, Cherman V, et al. IEEE Transactions on Power Electronics, 2019, 34(7), 6601. 116 Van Erp R, Soleimanzadeh R, Nela L, et al. Nature, 2020, 585(7824), 211. 117 Nela L, Van Erp R, Perera N, et al. IEEE Electron Device Letters, 2021, 42(11), 1642.