Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23070142-15    https://doi.org/10.11896/cldb.23070142
  金属与金属基复合材料 |
铜基金属有机框架在肿瘤治疗中的研究进展
陈钰莹1, 赵璐1, 白云峰1,*, 冯锋1,2,*
1 山西大同大学化学与化工学院,化学生物传感山西省重点实验室,山西 大同 037009
2 山西能源学院能源化学与材料工程系,太原 030600
Research Progress of Copper-based MOFs in Tumor Treatment
CHEN Yuying1, ZHAO Lu1, BAI Yunfeng1,*, FENG Feng1,2,*
1 Shanxi Provincial Key Laboratory of Chemical Biosensing, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, Shanxi, China
2 School Department of Energy Chemistry and Materials Engineering, Shanxi Institute of Energy, Taiyuan 030600, China
下载:  全 文 ( PDF ) ( 17311KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铜基金属有机框架(Cu-MOFs)是以Cu(Ⅰ)/Cu(Ⅱ)为配位中心与有机配体通过配位键相连接形成的一类MOFs,具有较高的孔隙率、较大的比表面积、丰富的金属位点和催化类芬顿(Fenton)反应等特性。Cu-MOFs自身可以作为抗肿瘤治疗剂,也可以作为载体负载多种治疗剂和靶向剂,在肿瘤治疗领域具有很好的应用前景。本综述总结了将Cu-MOFs用于抗肿瘤药物化疗、化学动力学治疗、光热治疗、光动力治疗、声动力治疗等多种单模式治疗,以及多模式联合治疗的研究进展,阐述了Cu-MOFs在肿瘤治疗研究中面临的挑战及发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈钰莹
赵璐
白云峰
冯锋
关键词:  铜基MOFs  肿瘤治疗  单模式治疗  联合治疗  HKUST-1  Cu-TCPP    
Abstract: Cu-basedmetal-organic frameworks (Cu-MOFs) are a class of polymer crystals formed by the combination of Cu ions or Cu clusters with organic ligands through coordination bonds. Since Williams' innovative discovery of the first class of Cu-MOFs, it has attracted great attention in the past dozen years. Cu-MOFs have the characteristics of strong drug loading capacity of inorganic nano-carrier and high safety of organic nano-carrier, and have good tumor targeting, which have high potential in the delivery of antitumor drugs. This paper reviews application in tumor therapeutics, including recent advances, challenges and future perspectives of Cu-MOFs. According to the modal of action on tumor cells, it was divided into monotherapy, bimodal therapy, trimodal therapy and quadruple therapy. Among them, a variety of monotherapies can be achieved by Cu-MOFs. The Fenton-like reaction of Cu(Ⅱ) can be used for Chemodynamic therapy (CDT). At the same time, Cu(Ⅱ) can convert light energy into heat energy by Localized surface plasmon resonance (LSPR), which can be used in tumor Photothermal therapy (PTT). Some organic ligands (such as TCPP, etc.) can produce ROS under light conditions, and Cu-MOFs formed by Cu(Ⅱ) coordination can be Photodynamic therapy (PDT). The TCPP can also generate ROS under Ultrasound (US) radiation to perform Sonodynamic therapy (SDT) on tumors. Bimodal therapy, trimodal therapy and quadruple therapy are mainly used to load antitumor drugs, photosensitizers, metal particles and other substances on the surface of Cu-MOFs to achieve combination therapy. Contrary to the limited therapeutic benefits and possible side effects produced by monotherapy. The multimodal combination therapy may harbor the collective merits of respective individual treatments and give rise to much higher antitumor efficacy at lower dosage of therapeutic agents administered, thus avoiding high-dose-induced side effects. The combined application of multiple treatments has shown advantages over monotherapy in producing improved treatment outcomes. Finally, we elaborate the current challenges and future development prospects of Cu-MOFs in tumor therapy.
Key words:  Cu-MOFs    tumor treatment    monotherapy    combined therapy    HKUST-1    Cu-TCPP
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  R74-34  
基金资助: 山西省高等学校科学研究优秀成果培育项目(2020KJ023);山西省高等学校科技创新项目(2021L368;2022L424);山西省基础研究计划资助项目(202303021211324);山西省留学回国人员科技活动择优资助项目(20230036);山西大同大学研究生教育创新项目(22CX09)
通讯作者:  *白云峰,山西大同大学化学与化工学院教授、硕士研究生导师,化学生物传感山西省重点实验室副主任。2004年中国矿业大学生物工程专业本科毕业,2007年中国矿业大学生物化工专业硕士毕业,2014山西师范大学分析化学专业博士毕业。研究方向为生物分析化学。发表学术论文80余篇,其中被SCI收录50余篇;已获授权国家发明专利10项,实用新型专利8项。baiyunfeng1130@126.com;
冯锋,二级教授、博士研究生导师,1985山西师范大学化学系本科毕业,2000河南师范大学化学系硕士毕业,2004湖南大学化学生物传感与计量学国家重点实验室博士毕业,享受国务院特殊津贴专家,现任山西能源学院党委书记。新世纪百千万人才工程国家级入选者、山西省“三晋英才”支持计划高端领军人才、山西省333人才工程入选者、山西省131领军人才工程学术技术带头人、山西省学术技术带头人、山西省委联系的高级专家、山西省优势特色学科化学学科带头人、山西省功能化学材料重点创新团队带头人、山西省新型介孔材料的合成应用与成果转化工程研究中心负责人、分析化学省重点建设学科带头人、化学生物传感山西省重点实验室主任。已出版学术专著2部,在JACS、Anal. Chem.、Chem. Comm.、Biosens. Bioelectron.等杂志发表学术论文240余篇,其中被SCI收录论文120余篇;已获授权国家发明专利30余项,主持国家自然科学基金4项、省自然科学基金等省级科研项目30余项。feng-feng64@263.net   
作者简介:  陈钰莹,硕士研究生,2021年于沧州师范学院取得理学学士学位,2021年至今于山西大同大学化学与化工学院攻读理学硕士学位。主要研究方向为生物分析化学。
引用本文:    
陈钰莹, 赵璐, 白云峰, 冯锋. 铜基金属有机框架在肿瘤治疗中的研究进展[J]. 材料导报, 2024, 38(21): 23070142-15.
CHEN Yuying, ZHAO Lu, BAI Yunfeng, FENG Feng. Research Progress of Copper-based MOFs in Tumor Treatment. Materials Reports, 2024, 38(21): 23070142-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070142  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23070142
1 Chen X J, Zhang M J, Li S N, et al. Journal of Materials Chemistry B, 2017, 5 (9), 1772.
2 Wang Z, Sun Q Q, Liu B, et al. Coordination Chemistry Reviews, 2021, 439, 213945.
3 Shait Mohammed M R, Ahmad V, Ahmad A, et al. Seminars in Cancer Biology, 2021, 69, 129.
4 Cheng L, Wang C, Feng L Z, et al. Chemical Reviews, 2014, 114 (21), 10869.
5 Alijani H, Noori A, Faridi N, et al. Journal of Solid State Chemistry, 2020, 292, 121680.
6 Gao P, Chen Y Y, Pan W, et al. Angewandte Chemie International Edition, 2021, 60 (31), 16763.
7 Cai X C, Liu B, Pang M L, et al. Dalton Transactions, 2018, 47 (45), 16329.
8 Yang Y, Liu J J, Liang C, et al. ACS Nano, 2016, 10 (2), 2774.
9 Zhao Q Q, Li J, Wu B, et al. ACS Applied Materials & Interfaces, 2020, 12 (20), 22687.
10 Yaghi O M, Li G, Li H. Nature, 1995, 378 (6558), 703.
11 Zhang Y, Wang L, Liu L, et al. ACS Applied Materials & Interfaces, 2018, 10 (48), 41035.
12 Chen Y Y, Zhong H, Wang J B, et al. Chemical Science, 2019, 10 (22), 5773.
13 Neufeld M J, Lutzke A, Pratx G, et al. Chemistry-A European Journal, 2020, 27 (10), 3229.
14 Liu X W, Hao Y, Popovtzer R, et al. Advanced Healthcare Materials, 2020, 10 (5), e2001167.
15 Yu P L, Han Y J, Han D L, et al. Journal of Hazardous Materials, 2020, 390, 122126.
16 Kurmoo M, Kepert C J. New Journal of Chemistry, 1998, 22 (12), 1515.
17 Tian H L, Zhang M Z, Jin G X, et al. Journal of Colloid and Interface Science, 2021, 587, 358.
18 He Y L, Guo S W, Zhang Y, et al. Biomaterials, 2021, 275, 120962.
19 Zhang D, Xu H, Zhang X L, et al. ACS Applied Materials & Interfaces, 2018, 10 (30), 25203.
20 Shen J Y, Zhou W X, Jia M J, et al. ACS Applied Bio Materials, 2021, 4 (7), 5753.
21 Wang C, Cao F J, Ruan Y D, et al. Angewandte Chemie International Edition, 2019, 58 (29), 9846.
22 Chui Stephen S Y, Lo Samuel M F, Charmant Jonathan P H, et al. Science, 1999, 283 (5405), 1148.
23 Xu G, Yamada T, Otsubo K, et al. Journal of the American Chemical Society, 2012, 134 (40), 16524.
24 Ma W, Zhang H, Li S Y, et al. ACS Biomaterials Science & Engineering, 2022, 8 (3), 1354.
25 Hao Y N, Qu C C, Shu Y, et al. Nanomaterials, 2021, 11 (7), 1843.
26 He J C, Dong J W, Hu Y F, et al. Nanoscale, 2019, 11 (13), 6089.
27 Ke F, Yuan Y P, Qiu L G, et al. Journal of Materials Chemistry, 2011, 21 (11), 3843.
28 Gao Z, Li Y, Zhang Y, et al. Nanoscale, 2020, 12 (15), 8139.
29 Hou L, Liu Y, Liu W, et al. Acta Pharmaceutica Sinica B, 2021, 11 (7), 2016.
30 Tang Z M, Liu Y Y, He M Y, et al. Angewandte Chemie International Edition, 2018, 58 (4), 946.
31 Hao Y N, Zhang W X, Gao Y R, et al. Journal of Materials Chemistry B, 2021, 9 (2), 250.
32 Wang Z, Liu B, Sun Q Q, et al. ACS Applied Materials & Interfaces, 2020, 12 (15), 17254.
33 Wang D D, Wu H H, Wang C L, et al. Angewandte Chemie International Edition, 2020, 60 (6), 3001.
34 Bian Y L, Liu B, Liang S, et al. Chemical Engineering Journal, 2022, 435, 135046.
35 Yang P P, Tao J, Chen F F, et al. Small, 2021, 17 (7), e2005865.
36 Liu J, Yuan Y, Cheng Y, et al. Journal of the American Chemical Society, 2022, 144 (11), 4799.
37 Wu H S, Chen F H, Gu D H, et al. Nanoscale, 2020, 12 (33), 17319.
38 Gao L, Song Y, Zhong J, et al. ACS Biomaterials Science & Engineering, 2022, 8 (3), 1074.
39 Li B, Wang X Y, Chen L, et al. Theranostics, 2018, 8 (15), 4086.
40 Jaque D, Martínez Maestro L, del Rosal B, et al. Nanoscale, 2014, 6 (16), 9494.
41 He H Z, Du L H, Guo H L, et al. Small, 2020, 16 (33), e2001251.
42 Weng Y Z W, Guan S Y, Wang L, et al. Small, 2019, 16 (1), 1905184.
43 Wang Y B, Xu S D, Shi L L, et al. Angewandte Chemie International Edition, 2021, 60 (27), 14945.
44 Zhang W, Lu J, Gao X, et al. Angewandte Chemie International Edition, 2018, 57 (18), 4891.
45 Chakraborty D, Musib D, Saha R, et al. Materials Today Chemistry, 2022, 24, 100882.
46 Gui L, Zhou J, Zhou L, et al. Journal of Materials Chemistry B, 2018, 6 (14), 2078.
47 Cai X C, Xie Z X, Ding B B, et al. Advanced Science, 2019, 6 (15), 1900848.
48 Chen Z X, Wu Y F, Yao Z P, et al. ACS Applied Materials & Interfaces, 2022, 14 (39), 44199.
49 Wang Y, Wu W, Liu J, et al. ACS Nano, 2019, 13 (6), 6879.
50 Wang Y, Liu X G, Wu W B, et al. Advanced Therapeutics, 2020, 3 (7), 2000011.
51 Du J S, Chen G P, Yuan X Y, et al. Frontiers in Bioengineering and Biotechnology, 2023, 11, 1125348.
52 Cui R X, Shi J, Liu Z L. Dalton Transactions, 2021, 50 (43), 15870.
53 Li J H, Zhang Z Z, Li J, et al. Acta Biomaterialia, 2022, 152, 495.
54 Dong J L, Yu Y Y, Pei Y X, et al. Journal of Colloid and Interface Science, 2022, 607, 1651.
55 Dong J L, Ma K, Pei Y X, et al. Chemical Communications, 2022, 58 (88), 12341.
56 Pan Q Q, Xie L, Liu R, et al. International Journal of Pharmaceutics, 2022, 612, 121351.
57 Zhang H, Zhang Q Y, Guo Z Y, et al. Journal of Colloid and Interface Science, 2022, 615, 517.
58 Wu H S, Wu F R, Zhou T T, et al. Chemical Engineering Journal, 2022, 431, 133470.
59 Luo D, Carter K A, Molins E A G, et al. Journal of Controlled Release, 2019, 297, 39.
60 Zhang D, Wu M, Cai Z X, et al. Advanced Science, 2018, 5 (2), 1700648.
61 Sharma S, Mittal D, Verma A K, et al. ACS Applied Bio Materials, 2019, 2 (5), 2092.
62 Wang Y, Wu W, Mao D, et al. Advanced Functional Materials, 2020, 30 (28), 2002431.
63 Zeng R, He T T, Lu L, et al. Journal of Materials Chemistry B, 2021, 9 (20), 4143.
64 Ni K Y, Aung T, Li S Y, et al. Chem, 2019, 5 (7), 1892.
65 Xie Z X, Liang S, Cai X C, et al. ACS Applied Materials & Interfaces, 2019, 11 (35), 31671.
66 Hu C H, Yu Y Y, Chao S, et al. Molecules, 2021, 26 (13), 34201944.
67 Dong M J, Li W Q, Xiang Q, et al. ACS Applied Materials & Interfaces, 2022, 14 (26), 29599.
68 Pan X T, Wang H Y, Wang S H, et al. Science China Life Sciences, 2018, 61 (4), 415.
69 Wang X W, Zhong X Y, Gong F, et al. Materials Horizons, 2020, 7 (8), 2028.
70 Zhang K, Meng X D, Yang Z, et al. Biomaterials, 2020, 258, 120278.
71 Sun Y, Cao J, Wang X, et al. ACS Applied Materials & Interfaces, 2021, 13 (32), 38114.
72 Zhang H X, Li Y M, Liu J Y, et al. Frontiers in Materials, 2022, 9 (8), 789.
73 Wang C B, Xue F F, Wang M X, et al. ACS Applied Materials & Interfaces, 2022, 14 (34), 38604.
74 Zhang Q Q, Li Y, Jiang C H, et al. Advanced Healthcare Materials, 2023, 12(28), 2301502.
75 Ren D B, Cheng Y B, Xu W X, et al. Small, 2022, 19 (4), e2205772.
76 Geng P, Yu N, Macharia D K, et al. Chemical Engineering Journal, 2022, 441, 135964.
77 Cheng Y, Wen C, Sun Y Q, et al. Advanced Functional Materials, 2021, 31 (37), 2104378.
78 Sun Y N, Du X N, Liang J Y, et al. Journal of Colloid and Interface Science, 2023, 645, 607.
79 Zuo J J, Hao S Y, Li W Q, et al. Langmuir, 2023, 39 (23), 8008.
[1] 唐昭敏, 田维君. Fe3O4磁性纳米药物用于克服肿瘤多药耐药性的研究[J]. 材料导报, 2023, 37(15): 22010219-7.
[2] 叶舒岳, 冯雅丽, 史海斌. 智能响应型小分子探针在肿瘤诊疗方面的研究进展[J]. 材料导报, 2022, 36(3): 21120202-15.
[3] 贾斐, 杜传超, 毛天立, 刘宇, 刘晓光. 纳米载体共递送基因和化疗药物用于肿瘤治疗的研究进展[J]. 材料导报, 2022, 36(17): 20080171-9.
[4] 那立艳, 张丽影, 张凤杰, 华瑞年. 室温非有机体系中HKUST-1的快速制备及对活性蓝194的吸附[J]. 材料导报, 2020, 34(4): 4137-4141.
[5] 宋鹏宇, 邓永岩, 韩海杰, 金桥. 活性氧可激活的聚合物纳米载体用于光动力-化疗联合治疗的研究[J]. 材料导报, 2020, 34(10): 10166-10170.
[6] 王怀基, 董海青. 还原响应的白蛋白纳米颗粒负载甲氨蝶呤用于抗肿瘤治疗[J]. 材料导报, 2019, 33(Z2): 547-552.
[7] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed