Research Progress of Copper-based MOFs in Tumor Treatment
CHEN Yuying1, ZHAO Lu1, BAI Yunfeng1,*, FENG Feng1,2,*
1 Shanxi Provincial Key Laboratory of Chemical Biosensing, School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, Shanxi, China 2 School Department of Energy Chemistry and Materials Engineering, Shanxi Institute of Energy, Taiyuan 030600, China
Abstract: Cu-basedmetal-organic frameworks (Cu-MOFs) are a class of polymer crystals formed by the combination of Cu ions or Cu clusters with organic ligands through coordination bonds. Since Williams' innovative discovery of the first class of Cu-MOFs, it has attracted great attention in the past dozen years. Cu-MOFs have the characteristics of strong drug loading capacity of inorganic nano-carrier and high safety of organic nano-carrier, and have good tumor targeting, which have high potential in the delivery of antitumor drugs. This paper reviews application in tumor therapeutics, including recent advances, challenges and future perspectives of Cu-MOFs. According to the modal of action on tumor cells, it was divided into monotherapy, bimodal therapy, trimodal therapy and quadruple therapy. Among them, a variety of monotherapies can be achieved by Cu-MOFs. The Fenton-like reaction of Cu(Ⅱ) can be used for Chemodynamic therapy (CDT). At the same time, Cu(Ⅱ) can convert light energy into heat energy by Localized surface plasmon resonance (LSPR), which can be used in tumor Photothermal therapy (PTT). Some organic ligands (such as TCPP, etc.) can produce ROS under light conditions, and Cu-MOFs formed by Cu(Ⅱ) coordination can be Photodynamic therapy (PDT). The TCPP can also generate ROS under Ultrasound (US) radiation to perform Sonodynamic therapy (SDT) on tumors. Bimodal therapy, trimodal therapy and quadruple therapy are mainly used to load antitumor drugs, photosensitizers, metal particles and other substances on the surface of Cu-MOFs to achieve combination therapy. Contrary to the limited therapeutic benefits and possible side effects produced by monotherapy. The multimodal combination therapy may harbor the collective merits of respective individual treatments and give rise to much higher antitumor efficacy at lower dosage of therapeutic agents administered, thus avoiding high-dose-induced side effects. The combined application of multiple treatments has shown advantages over monotherapy in producing improved treatment outcomes. Finally, we elaborate the current challenges and future development prospects of Cu-MOFs in tumor therapy.
1 Chen X J, Zhang M J, Li S N, et al. Journal of Materials Chemistry B, 2017, 5 (9), 1772. 2 Wang Z, Sun Q Q, Liu B, et al. Coordination Chemistry Reviews, 2021, 439, 213945. 3 Shait Mohammed M R, Ahmad V, Ahmad A, et al. Seminars in Cancer Biology, 2021, 69, 129. 4 Cheng L, Wang C, Feng L Z, et al. Chemical Reviews, 2014, 114 (21), 10869. 5 Alijani H, Noori A, Faridi N, et al. Journal of Solid State Chemistry, 2020, 292, 121680. 6 Gao P, Chen Y Y, Pan W, et al. Angewandte Chemie International Edition, 2021, 60 (31), 16763. 7 Cai X C, Liu B, Pang M L, et al. Dalton Transactions, 2018, 47 (45), 16329. 8 Yang Y, Liu J J, Liang C, et al. ACS Nano, 2016, 10 (2), 2774. 9 Zhao Q Q, Li J, Wu B, et al. ACS Applied Materials & Interfaces, 2020, 12 (20), 22687. 10 Yaghi O M, Li G, Li H. Nature, 1995, 378 (6558), 703. 11 Zhang Y, Wang L, Liu L, et al. ACS Applied Materials & Interfaces, 2018, 10 (48), 41035. 12 Chen Y Y, Zhong H, Wang J B, et al. Chemical Science, 2019, 10 (22), 5773. 13 Neufeld M J, Lutzke A, Pratx G, et al. Chemistry-A European Journal, 2020, 27 (10), 3229. 14 Liu X W, Hao Y, Popovtzer R, et al. Advanced Healthcare Materials, 2020, 10 (5), e2001167. 15 Yu P L, Han Y J, Han D L, et al. Journal of Hazardous Materials, 2020, 390, 122126. 16 Kurmoo M, Kepert C J. New Journal of Chemistry, 1998, 22 (12), 1515. 17 Tian H L, Zhang M Z, Jin G X, et al. Journal of Colloid and Interface Science, 2021, 587, 358. 18 He Y L, Guo S W, Zhang Y, et al. Biomaterials, 2021, 275, 120962. 19 Zhang D, Xu H, Zhang X L, et al. ACS Applied Materials & Interfaces, 2018, 10 (30), 25203. 20 Shen J Y, Zhou W X, Jia M J, et al. ACS Applied Bio Materials, 2021, 4 (7), 5753. 21 Wang C, Cao F J, Ruan Y D, et al. Angewandte Chemie International Edition, 2019, 58 (29), 9846. 22 Chui Stephen S Y, Lo Samuel M F, Charmant Jonathan P H, et al. Science, 1999, 283 (5405), 1148. 23 Xu G, Yamada T, Otsubo K, et al. Journal of the American Chemical Society, 2012, 134 (40), 16524. 24 Ma W, Zhang H, Li S Y, et al. ACS Biomaterials Science & Engineering, 2022, 8 (3), 1354. 25 Hao Y N, Qu C C, Shu Y, et al. Nanomaterials, 2021, 11 (7), 1843. 26 He J C, Dong J W, Hu Y F, et al. Nanoscale, 2019, 11 (13), 6089. 27 Ke F, Yuan Y P, Qiu L G, et al. Journal of Materials Chemistry, 2011, 21 (11), 3843. 28 Gao Z, Li Y, Zhang Y, et al. Nanoscale, 2020, 12 (15), 8139. 29 Hou L, Liu Y, Liu W, et al. Acta Pharmaceutica Sinica B, 2021, 11 (7), 2016. 30 Tang Z M, Liu Y Y, He M Y, et al. Angewandte Chemie International Edition, 2018, 58 (4), 946. 31 Hao Y N, Zhang W X, Gao Y R, et al. Journal of Materials Chemistry B, 2021, 9 (2), 250. 32 Wang Z, Liu B, Sun Q Q, et al. ACS Applied Materials & Interfaces, 2020, 12 (15), 17254. 33 Wang D D, Wu H H, Wang C L, et al. Angewandte Chemie International Edition, 2020, 60 (6), 3001. 34 Bian Y L, Liu B, Liang S, et al. Chemical Engineering Journal, 2022, 435, 135046. 35 Yang P P, Tao J, Chen F F, et al. Small, 2021, 17 (7), e2005865. 36 Liu J, Yuan Y, Cheng Y, et al. Journal of the American Chemical Society, 2022, 144 (11), 4799. 37 Wu H S, Chen F H, Gu D H, et al. Nanoscale, 2020, 12 (33), 17319. 38 Gao L, Song Y, Zhong J, et al. ACS Biomaterials Science & Engineering, 2022, 8 (3), 1074. 39 Li B, Wang X Y, Chen L, et al. Theranostics, 2018, 8 (15), 4086. 40 Jaque D, Martínez Maestro L, del Rosal B, et al. Nanoscale, 2014, 6 (16), 9494. 41 He H Z, Du L H, Guo H L, et al. Small, 2020, 16 (33), e2001251. 42 Weng Y Z W, Guan S Y, Wang L, et al. Small, 2019, 16 (1), 1905184. 43 Wang Y B, Xu S D, Shi L L, et al. Angewandte Chemie International Edition, 2021, 60 (27), 14945. 44 Zhang W, Lu J, Gao X, et al. Angewandte Chemie International Edition, 2018, 57 (18), 4891. 45 Chakraborty D, Musib D, Saha R, et al. Materials Today Chemistry, 2022, 24, 100882. 46 Gui L, Zhou J, Zhou L, et al. Journal of Materials Chemistry B, 2018, 6 (14), 2078. 47 Cai X C, Xie Z X, Ding B B, et al. Advanced Science, 2019, 6 (15), 1900848. 48 Chen Z X, Wu Y F, Yao Z P, et al. ACS Applied Materials & Interfaces, 2022, 14 (39), 44199. 49 Wang Y, Wu W, Liu J, et al. ACS Nano, 2019, 13 (6), 6879. 50 Wang Y, Liu X G, Wu W B, et al. Advanced Therapeutics, 2020, 3 (7), 2000011. 51 Du J S, Chen G P, Yuan X Y, et al. Frontiers in Bioengineering and Biotechnology, 2023, 11, 1125348. 52 Cui R X, Shi J, Liu Z L. Dalton Transactions, 2021, 50 (43), 15870. 53 Li J H, Zhang Z Z, Li J, et al. Acta Biomaterialia, 2022, 152, 495. 54 Dong J L, Yu Y Y, Pei Y X, et al. Journal of Colloid and Interface Science, 2022, 607, 1651. 55 Dong J L, Ma K, Pei Y X, et al. Chemical Communications, 2022, 58 (88), 12341. 56 Pan Q Q, Xie L, Liu R, et al. International Journal of Pharmaceutics, 2022, 612, 121351. 57 Zhang H, Zhang Q Y, Guo Z Y, et al. Journal of Colloid and Interface Science, 2022, 615, 517. 58 Wu H S, Wu F R, Zhou T T, et al. Chemical Engineering Journal, 2022, 431, 133470. 59 Luo D, Carter K A, Molins E A G, et al. Journal of Controlled Release, 2019, 297, 39. 60 Zhang D, Wu M, Cai Z X, et al. Advanced Science, 2018, 5 (2), 1700648. 61 Sharma S, Mittal D, Verma A K, et al. ACS Applied Bio Materials, 2019, 2 (5), 2092. 62 Wang Y, Wu W, Mao D, et al. Advanced Functional Materials, 2020, 30 (28), 2002431. 63 Zeng R, He T T, Lu L, et al. Journal of Materials Chemistry B, 2021, 9 (20), 4143. 64 Ni K Y, Aung T, Li S Y, et al. Chem, 2019, 5 (7), 1892. 65 Xie Z X, Liang S, Cai X C, et al. ACS Applied Materials & Interfaces, 2019, 11 (35), 31671. 66 Hu C H, Yu Y Y, Chao S, et al. Molecules, 2021, 26 (13), 34201944. 67 Dong M J, Li W Q, Xiang Q, et al. ACS Applied Materials & Interfaces, 2022, 14 (26), 29599. 68 Pan X T, Wang H Y, Wang S H, et al. Science China Life Sciences, 2018, 61 (4), 415. 69 Wang X W, Zhong X Y, Gong F, et al. Materials Horizons, 2020, 7 (8), 2028. 70 Zhang K, Meng X D, Yang Z, et al. Biomaterials, 2020, 258, 120278. 71 Sun Y, Cao J, Wang X, et al. ACS Applied Materials & Interfaces, 2021, 13 (32), 38114. 72 Zhang H X, Li Y M, Liu J Y, et al. Frontiers in Materials, 2022, 9 (8), 789. 73 Wang C B, Xue F F, Wang M X, et al. ACS Applied Materials & Interfaces, 2022, 14 (34), 38604. 74 Zhang Q Q, Li Y, Jiang C H, et al. Advanced Healthcare Materials, 2023, 12(28), 2301502. 75 Ren D B, Cheng Y B, Xu W X, et al. Small, 2022, 19 (4), e2205772. 76 Geng P, Yu N, Macharia D K, et al. Chemical Engineering Journal, 2022, 441, 135964. 77 Cheng Y, Wen C, Sun Y Q, et al. Advanced Functional Materials, 2021, 31 (37), 2104378. 78 Sun Y N, Du X N, Liang J Y, et al. Journal of Colloid and Interface Science, 2023, 645, 607. 79 Zuo J J, Hao S Y, Li W Q, et al. Langmuir, 2023, 39 (23), 8008.