Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 23120226-7    https://doi.org/10.11896/cldb.23120226
  无机非金属及其复合材料 |
水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响
马豪达, 白银*, 陈波, 葛龙甄, 白延杰, 张丰
南京水利科学研究院, 水灾害防御全国重点实验室, 南京 210029
Influence of Water-Cement Ratio and Rubber Admixture on Mechanical Properties and Energy Evolution Law of Mortar
MA Haoda, BAI Yin*, CHEN Bo, GE Longzhen, BAI Yanjie, ZHANG Feng
The National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210029, China
下载:  全 文 ( PDF ) ( 15220KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥砂浆在压力作用下易发生脆性开裂,利用橡胶颗粒改善其变形能力是常见措施。高掺量橡胶砂浆具有优异的吸能效果,能够有效改善砂浆的变形适应性。本工作通过分析砂浆受压过程中的应力-应变曲线,考察了水胶比和橡胶掺量对砂浆强度、变形能力的影响,并分析了能量演化规律。结果表明随着水胶比从0.3增大至0.5,强度降低35%,橡胶掺量从0%增加至75%,强度降低84%;随着水胶比增大、橡胶掺量增加,弹性模量明显降低,受压至破坏总能量降低,转变为弹性应变能和耗散能,趋势与未掺橡胶颗粒的砂浆一致,与轴心抗压强度具有显著相关性;极限压应变受强度和橡胶掺量双重影响,橡胶掺量从0%增加至75%,极限压应变呈先降低后增加的趋势;橡胶颗粒可延缓能量耗散,水胶比增大加快能量耗散使试件失效。水胶比和橡胶掺量对强度有显著影响;高掺量橡胶颗粒对变形能力有明显改善,延缓能量耗散,有效阻碍了裂缝的发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马豪达
白银
陈波
葛龙甄
白延杰
张丰
关键词:  橡胶砂浆  力学性能  能量演化  水胶比  高橡胶掺量    
Abstract: Cement mortar is prone to brittle cracking under pressure, and its deformability can be improved by the use of rubber granules to make high rubber mixing mortar which has excellent energy absorption effect and can effectively improve the deformation adaptability of mortar. In this work, the stress-strain curves during the compression process of mortar, the effects of water-cement ratio and rubber admixture on the strength and deformation capacity of mortar were investigated, and the energy evolution law was analyzed. The results showed 35% reduction in strength as the water-cement ratio increased from 0.3 to 0.5, and 84% reduction in strength as the rubber doping increased from 0% to 75%. With the increase of water-cement ratio and rubber doping, the modulus of elasticity decreased significantly, and the total energy from compression to destruction decreased, which was transformed into elastic strain energy and dissipation energy. The trend was consistent with the mortar without rubber particles, with a significant correlation with axial compressive strength. Ultimate compressive strain was affected by both strength and rubber percentage the ultimate compressive strain decreased and then increased when rubber percentage increases from 0% to 75%. Rubber particles could slow down energy dissipation, and the increase of water-cement ratio accelerated energy dissipation and made the specimen fail. The water-cement ratio and rubber percentage have a significant effect on the strength. High percentage of rubber particles has a significant improvement on the deformation capacity, delaying the energy dissipation, and effectively hindering the development of cracks.
Key words:  rubber mortar    mechanical properties    energy evolution    water-cement ratio    high rubber content
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TU52  
基金资助: 国家自然科学基金重点项目(51739008);国家重点研发计划(2020YFC1511902)
通讯作者:  *白银,南京水利科学研究院材料结构研究所正高级工程师、硕士研究生导师。2009年南京水利科学研究院材料结构研究所材料学硕士毕业后到南京水利科学研究院工作至今,2022年南京水利科学研究院水工结构专业博士毕业。目前主要从事水工混凝土、高性能混凝土、碱骨料反应等方面的研究工作。ybai@nhri.cn   
作者简介:  马豪达,2024年6月于南京水利科学研究院取得工学硕士学位。目前主要研究领域为水下修复材料、弹性砂浆。
引用本文:    
马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
MA Haoda, BAI Yin, CHEN Bo, GE Longzhen, BAI Yanjie, ZHANG Feng. Influence of Water-Cement Ratio and Rubber Admixture on Mechanical Properties and Energy Evolution Law of Mortar. Materials Reports, 2025, 39(1): 23120226-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120226  或          https://www.mater-rep.com/CN/Y2025/V39/I1/23120226
1 Li X, Li L, Zheng Y, et al. Materials, 2023, 16(13), 4731.
2 Yang R Z, Xu Y, Chen P Y, et al. Materials Reports, 2021, 35(10), 10062(in Chinese).
杨荣周, 徐颖, 陈佩圆, 等. 材料导报, 2021, 35(10), 10062.
3 Cheng X S, Song Q S, Yao Y T. Rubber Science and Technology, 2020, 18(5), 245(in Chinese).
程贤甦, 宋秋生, 姚玉田. 橡胶科技, 2020, 18(5), 245.
4 Zeng L, Yang T, Ma L L. Journal of Yangtze University (Natural Science Edition), 2023, 20(6), 125(in Chinese).
曾磊, 杨涛, 马林玲. 长江大学学报(自然科学版), 2023, 20(6), 125.
5 Jiao C J, Zhang C M, Zhang W H. Journal of Chongqing Jianzhu University, 2008, 30(2), 138.
6 Cao X W, Chen X D, Bai Y, et al. Mechanical properties of rubber concrete-fracture, fatigue and impact, Southeast University Press, China, 2021, pp. 11(in Chinese).
曹小武, 陈徐东, 白银, 等. 橡胶混凝土力学特性-断裂、疲劳、冲击, 东南大学出版社, 2021, pp. 11.
7 Feng L Y. Experimental study on properties of rubber concrete. Master's Thesis, North China Institute of Water Conservancy and Hydropower, China, 2013 (in Chinese).
冯凌云. 橡胶混凝土材料性能的试验研究. 硕士学位论文, 华北水利水电学院, 2013.
8 Xue G, Sun L S, Xu S. Building Structure, 2021, 51(16), 121(in Chinese).
薛刚, 孙立所, 许胜. 建筑结构, 2021, 51(16), 121.
9 Xue G, Dong Y J, Yi X, et al. Building Structure, 2022, 52(2), 115(in Chinese).
薛刚, 董亚杰, 衣笑, 等. 建筑结构, 2022, 52(2), 115.
10 Xue G, Zhu H J, Xu S, et al. Engineering Mechanics, 2022, 39(11), 203.
11 Atahan A O, Yücel A . Construction and Building Materials, 2012, 36, 617.
12 Mendis A S M, Al-Deen S, Ashraf M. Construction and Building Materials, 2017, 137, 354.
13 Mendis A S M, Al-Deen S, Ashraf M. Construction and Building Materials, 2017, 154, 644.
14 Yang R Z, Chen P Y, Ge J J, et al. Materials Reports, 2022, 36(9), 227(in Chinese).
杨荣周, 陈佩圆, 葛进进, 等. 材料导报, 2022, 36(9), 227.
15 Liu Y R, Ge S K, Han Y. Materials Reports, 2014, 28(S2), 422(in Chinese).
刘艳荣, 葛树奎, 韩瑜. 材料导报, 2014, 28(S2), 422.
16 Shu X W. Journal of Highway and Transportation Research and Development, 2018, 35(7), 15(in Chinese).
舒兴旺. 公路交通科技, 2018, 35(7), 15.
17 Xue G, Liu L Q. Concrete, 2022(3), 105(in Chinese).
薛刚, 刘利强. 混凝土, 2022(3), 105.
18 Hu Y L, Gao P W, Li F R, et al. Journal of Building Materials, 2020, 23(1), 85.
19 Tian M M. Experimental study on water-binder ratio of large cementitious material. Master's Thesis, Beijing University of Civil Engineering and Architecture, China, 2022 (in Chinese).
田萌萌. 大胶凝材料水胶比相关规律的试验研究. 硕士学位论文, 北京建筑大学, 2022.
20 Wu Y M. Study of the reactive powder concrete (RPC) about compressive stress-strain curve. Master's Thesis, Guangzhou University, China, 2013 (in Chinese).
吴有明. 活性粉末混凝土(RPC)受压应力—应变全曲线研究. 硕士学位论文, 广州大学, 2013.
21 Xu H Y. Research on the compound method and physical-mechanical properties of modified rubberized concrete. Master's Thesis, Zhengzhou University, China, 2016 (in Chinese).
徐宏殷. 改性橡胶混凝土的配制与物理力学性能研究. 硕士学位论文, 郑州大学, 2016.
22 Yuan Q, Feng L Y, Cao H L, et al. Journal of Architecture and Civil Engineering, 2013, 30(3), 96(in Chinese).
袁群, 冯凌云, 曹宏亮, 等. 建筑科学与工程学报, 2013, 30(3), 96.
23 Xue G, Sun L S, Xu S, et al. Journal of Shenyang Jianzhu University (Natural Science), 2020, 36(6), 1082(in Chinese).
薛刚, 孙立所, 许胜, 等. 沈阳建筑大学学报(自然科学版), 2020, 36(6), 1082.
24 Fu Q, Zhao X, He J Q, et al. Journal of the Chinese Ceramic Society, 2021, 48(8), 1670(in Chinese).
傅强, 赵旭, 何嘉琦, 等. 硅酸盐学报, 2021, 48(8), 1670.
25 Yang R Z, Xu Y, Chen P Y. Materials Reports, 2020, 34(14), 14070(in Chinese).
杨荣周, 徐颖, 陈佩圆. 材料导报, 2020, 34(14), 14070.
[1] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[2] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[3] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[4] 邹家伟, 刘志超, 王发洲. 基于γ-C2S的蜂窝陶瓷常温制备与性能研究[J]. 材料导报, 2025, 39(4): 24010136-7.
[5] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[6] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[7] 丁来龙, 马明亮, 冯超, 黄微波, 王一凡, 林佳宇, 吴超. 聚脲材料的优化及抗爆抗侵彻性能研究进展[J]. 材料导报, 2025, 39(4): 24010082-9.
[8] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
[9] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[10] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[11] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[12] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[13] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[14] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[15] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed