Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 45-49    https://doi.org/10.11896/j.issn.1005-023X.2017.09.005
  专题栏目:二维材料 |
二维黑磷的制备及光电器件研究进展*
王慧德, 范涛健, 谢中建, 张晗
深圳大学-新加坡国立大学光电科技协同创新中心, 深圳 518060
Research Progress on Fabrication of Two-dimensional Black Phosphorus and Relevant Optoelectronic Devices
WANG Huide, FAN Taojian, XIE Zhongjian, ZHANG Han
SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Shenzhen 518060
下载:  全 文 ( PDF ) ( 1595KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 黑磷有随层数可调的直接带隙和独特的各向异性结构等众多优异的性质,因此近年来受到科研人员的广泛关注。本文概述了二维黑磷的制备方法,重点综述了黑磷独特的非线性光学性质、各向异性光学性质及它在光电器件中的应用。最后,对黑磷的应用前景与一些亟待解决的问题做了简单的讨论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王慧德
范涛健
谢中建
张晗
关键词:  二维材料  黑磷  制备  光学性质  光电器件    
Abstract: Black phosphorus,which has been widely concerned by researchers in recent years, has lots of excellent properties such as direct band gap and unique anisotropic structure. This paper summarizes the fabrication of two-dimensional black phospho-rus, focusing on unique non-linear optical properties of black phosphorus, anisotropic optical properties and application in optoelectronic devices. Finally, prospects for application of black phosphorus and some problems which need to be solved are summarized.
Key words:  two-dimensional material    black phosphorus    fabrication    optical property    optoelectronic device
出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TB34  
  O799  
基金资助: *国家自然科学基金(61675135; 61435010)
通讯作者:  张晗:男,1984年生,教授,博士研究生导师,主要从事二维材料光电特性及应用的研究 E-mail:hzhang@szu.edu.cn   
作者简介:  王慧德:男,1993年生,博士研究生,主要从事二维材料光电器件的研究
引用本文:    
王慧德, 范涛健, 谢中建, 张晗. 二维黑磷的制备及光电器件研究进展*[J]. CLDB, 2017, 31(9): 45-49.
WANG Huide, FAN Taojian, XIE Zhongjian, ZHANG Han. Research Progress on Fabrication of Two-dimensional Black Phosphorus and Relevant Optoelectronic Devices. Materials Reports, 2017, 31(9): 45-49.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.005  或          https://www.mater-rep.com/CN/Y2017/V31/I9/45
[1] Xia F.Two-dimensional material nanophotonics[J]. Nat Photon,2014,8(12):899.
[2] Lee C, Wei X, Kysar J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphen[J]. Science,2008,321(5887):385.
[3] Geim A K, Novoselov K S.The rise of graphene[J]. Nat Mater,2007,6(3):183.
[4] Fleurence A, Friedlein R, Ozaki T, et al.Experimental evidence for epitaxial silicene on diboride thin film[J]. Phys Rev Lett,2012,108(24):245501.
[5] Alessro M, Carlo G, Daniele C, et al.Nanostructures: Hindering the oxidation of silicene with non-ractive encapsulation[J]. Adv Funct Mater,2013,23(35):4339.
[6] Radisavljevic B, Radenovic A, Brivio J,et al.Single-layer MoS2 transistors[J].Nat Nanotechnol,2011,6(3):147.
[7] Ye Guojun.Superconductivity in β-MNCl system and growth of black phosphorus single crystal[D].Hefei:University of Science and Techno-logy of China,2016(in Chinese).叶国俊. β-MNCl体系超导电性与黑磷单晶生长研究[D]. 合肥:中国科学技术大学,2016.
[8] Castellanosgomez A, Vicarelli L, Prada E, et al.Isolation and cha-racterization of few-layer black phosphorus[J]. 2d Materials,2014,1(2):025001.
[9] Brown A, Rundqvist S.Refinement of the crystal structure of black phosphorus[J]. Acta Crystallogr,1965,19(4):684.
[10] Slater J C, Koster G F, Wood J H.Symmetry and free electron properties of the gallium energy bands[J]. Phys Rev,1962,126(4):1307.
[11] Cartz L, Srinivasa S R, Riedner R J, et al.Effect of pressure on bonding in black phosphorus[J]. J Chem Phys,1979,71(4):1718.
[12] Liu H, Neal A T, et al.Phosphorene: An unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano,2014,8(4):4033.
[13] Qiao J, Kong X, Hu Z X, et al.High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nat Commun,2014,5:4475.
[14] Li L, Yu Y, Ye G J, et al.Black phosphorus field-effect transistors[J]. Nat Nanotechnol,2014, 9(5):372.
[15] Tran V, Soklaski R, Liang Y, et al.Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Phys Rev B,2014,89(23):817.
[16] Wang X, Jones A M, Seyler K L, et al.Highly anisotropic and robust excitons in monolayer black phosphorus[J]. Nat Nanotechnol,2014,10(6):517.
[17] Kong L, Qin Z, Xie G, et al.Black phosphorus as broadband saturable absorber for pulsed lasers from 1 μm to 2.7 μm wavelength[J]. Laser Phys Lett,2016,13(4):045801.
[18] Hao C, Yang B, Wen F, et al.Flexible all-solid-state supercapacitors based on liquid-exfoliated back-phosphorus nanoflakes[J]. Adv Mater,2016,28(16):3194.
[19] Tao W, Zhu X, Yu X, et al.Black phosphorus nanosheets as a robust delivery platform for cancer theranostics[J]. Adv Mater,2017,29(1):1603276.
[20] Jamieson J C.Crystal structures adopted by black phosphorus at high pressures[J]. Science, 1963,139(3561):1291.
[21] Maruyama Y, Suzuki S, Kobayashi K, et al.Synthesis and some properties of black phosphorus single crystals[J]. Physica B+C,1981,105(s1-3):99.
[22] Shirotani I.Growth of large aingle crystals of black phosphorus at high pressures and temperatures, and its electrical properties[J]. Mol Cryst Liq Cryst,1982,86(1):203.
[23] Endo S, Akahama Y, Terada S, et al.Growth of large single crystals of black phosphorus under high pressure[J]. Jpn J Appl Phys,1982,21(8):L482.
[24] Park C M, Sohn H J.Black phosphorus and its composite for lithium rechargeable batteries[J]. Cheminform,2010,38(46):1.
[25] Brent J R, Savjani N, Lewis E A, et al.Production of few-layer phosphorene by liquid exfoliation of black phosphorus.[J]. Chem Commun,2014,50(87):13338.
[26] Kang J, Wood J D, Wells S A, et al.Solvent exfoliation of electro-nic-grade, two-dimensional black phosphorus[J]. ACS Nano,2015,9(4):3596.
[27] Yasaei P, Kumar B, Foroozan T, et al.High-quality black phosphorus atomic layers by liquid-phase exfoliation[J]. Adv Mater,2015,27(11):1887.
[28] Hanlon D, Backes C, Doherty E, et al.Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics[J]. Nat Commun,2015,6:8563.
[29] Guo Z, Zhang H, Lu S, et al.From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics[J]. Adv Funct Mater,2015, 25(45):6996.
[30] Zhang X, Xie H, Liu Z, et al.Black phosphorus quantum dots[J]. Angew Chem Int Ed,2015, 127(12):3653.
[31] Sun Z, Xie H, Tang S, et al.Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents[J]. Angew Chem Int Ed,2015,127(39):11526.
[32] Lu S B, Miao L L, Guo Z N, et al.Broadband nonlinear optical response in multi-layer black phosphorus: An emerging infrared and mid-infrared optical material[J]. Opt Express,2015,23(9):11183.
[33] Engel M, Steiner M, Avouris P.Black phosphorus photodetector for multispectral, high-resolution imaging[J]. Nano Lett,2014,14(11):6414.
[34] Low T, Engel M, Steiner M, et al.Origin of photoresponse in black phosphorus phototransistors[J]. Phys Rev B,2014,90(8):081408.
[35] Xu Y, Wang Z, Guo Z, et al.Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots[J]. Adv Opt Mater,2016,4(8):1223.
[1] 王鹤龙, 史贵丙, 王丽, 李宗臻. 高饱和磁通密度铁基非晶纳米晶磁粉芯的研究进展[J]. 材料导报, 2025, 39(3): 24010092-9.
[2] 初红涛, 刘晓函, 赵明, 高立娣, 秦世丽, 韩爽, 王军. 铜纳米簇基荧光探针的合成及应用研究进展[J]. 材料导报, 2025, 39(2): 23110149-10.
[3] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[4] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[5] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[6] 李雪伍, 王红星, 郭伟玲, 邢志国, 黄艳斐, 王海斗. 红外抗反射微纳结构刻蚀制备研究进展[J]. 材料导报, 2024, 38(6): 22110062-10.
[7] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[8] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[9] 江巍雪, 汤新宇, 宋金蔚, 徐祚, 张源. 纳米流体的制备、稳定性及热物性研究进展[J]. 材料导报, 2024, 38(4): 22060208-11.
[10] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[11] 苗瑞霞, 张德栋, 谢妙春, 王业飞, 杨小峰. 本征缺陷对δ-InSe光电性质的影响[J]. 材料导报, 2024, 38(23): 23080234-7.
[12] 黄玺, 张亮, 王曦, 陈晨, 卢晓. 电子封装用纳米级无铅钎料的研究进展[J]. 材料导报, 2024, 38(23): 23080181-13.
[13] 潘宇, 况帆, 路新. 非连续增强钛基复合材料的研究现状及应用进展[J]. 材料导报, 2024, 38(21): 23080104-10.
[14] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[15] 孙国栋, 康凯, 解静, 贾研, 郑斌, 吕龙飞, 田清来, 唐宇星. Ti3SiC2陶瓷材料制备方法研究进展[J]. 材料导报, 2024, 38(18): 23020262-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed