Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 21040015-11    https://doi.org/10.11896/cldb.21040015
  高分子与聚合物基复合材料 |
n型有机热电材料掺杂改性的研究进展
高然, 吴庆港, 雷乐乐, 钟定文, 海杰峰, 陆振欢*
桂林理工大学化学与生物工程学院,广西电磁化学功能物质重点实验室,广西 桂林 541004
A Technological Review of Modifying n-type Organic Thermoelectric Materials by Adopting the Scheme of Doping
GAO Ran, WU Qinggang, LEI Lele, ZHONG Dingwen, HAI Jiefeng, LU Zhenhuan*
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, Guangxi, China
下载:  全 文 ( PDF ) ( 4966KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,热电材料引起了越来越多的关注,尤其有机热电材料发展非常迅速。有机半导体具有质轻、成本低廉、柔性好、结构易裁剪和本征热导低等特点,在低温微温差发电与制冷等方面具有独特优势,在热电材料领域具有极大的发展前景。其中,p型有机热电材料的研究已取得了很大进展,其最高电导率超过1 000 S/cm,热电性能接近无机材料的水平;相比之下,n型有机热电材料的发展则较缓慢,尤其电导率还有待进一步提高。提高n型有机热电材料性能的途径主要是通过分子骨架设计和侧链修饰来调控电导率、热导率和Seebeck系数,再引入掺杂剂掺杂改性,更进一步地提高材料热电性能。有机固相主要为非晶态,且分子间相互作用比较复杂,阻碍了掺杂机理的研究,导致掺杂改性研究发展缓慢。但最近涌现了不少文献成果,掺杂机理逐渐明晰,相关理论体系也越来越完整。本文综述了近年来掺杂改性n型有机热电材料的研究进展,探讨当前存在的问题,并展望该领域的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高然
吴庆港
雷乐乐
钟定文
海杰峰
陆振欢
关键词:  n型  有机热电材料  掺杂  电导率  热电性能  有机复合材料  构效关系    
Abstract: Recently, the development of thermoelectric materials has attracted ever-growing attention, especially for organic thermoelectric materials. Organic semi-conductors have the characteristics of lightweight, low cost, good flexibility, easily modifiable structures and low intrinsic thermal conductivity. They have unique advantages in power generation and refrigeration at low temperature and within narrow temperature diffe-rence, resulting in promising application potential in thermoelectric materials. Among them, the research of p-type organic thermoelectric materials has gained significant progress, and the state-of-the-art materials can exhibit a conductivity higher than 1 000 S/cm, with thermoelectric properties close to those of inorganic materials. In contrast, the development of n-type organic thermoelectric materials is relatively slower. In particular, their electrical conductivity needs to be further improved. The main approach for improving the performance of n-type organic thermoelectric materials is to regulate the electrical conductivity, thermal conductivity and Seebeck coefficient via molecular backbone designing and side-chain tailo-ring, and then introduce the dopant for doping modification to further improve the thermoelectric properties. Because the organic solid phase is mainly amorphous and the intermolecular interaction is quite complicated, the doping mechanisms can hardly be figured out, resulting in the slow development of the research of doping modification. Fortunately, a lot of results reported in literature have proliferated, which makes the doping mechanism gradually clear, and make the related theories more and more systematic. In this paper, the research progress of modifying n-type organic thermoelectric materials by adopting the scheme of doping is reviewed; in addition, the existing problems and the developing perspective of this field are discussed.
Key words:  n-type    organic thermoelectric materials    doping    conductivity    thermoelectric performance    organic composite    structure-activity relationship
发布日期:  2022-05-24
ZTFLH:  TN304.5  
基金资助: 国家自然科学基金(21962005;21563007);广西自然科学基金(2018GXNSFAA281137;2017GXNSFAA198343)
通讯作者:  zhenhuanlu@glut.edu.cn   
作者简介:  高然,2019年6月毕业于周口师范学院,获得工学学士学位。现为桂林理工大学化学与生物工程学院硕士研究生,在陆振欢副教授的指导下进行研究。目前主要研究领域为有机热电材料。
陆振欢,桂林理工大学化学生物工程学院副教授、硕士研究生导师。2007年7月本科毕业于西北大学化学系,2011年7月在西北大学化学与材料科学学院化学生物学专业取得硕士学位,2014年7月在中国科学院化学研究所物理化学专业取得博士学位,主要从事有机光电功能性材料与器件的研究工作。在有机光电材料与器件领域发表论文30余篇,包括Advanced Materials、Dyes and Pigments、Chemistry of Materials、Journal of Materials Chemistry、Physical Chemistry Chemical Physics、RSC Advances等。
引用本文:    
高然, 吴庆港, 雷乐乐, 钟定文, 海杰峰, 陆振欢. n型有机热电材料掺杂改性的研究进展[J]. 材料导报, 2022, 36(10): 21040015-11.
GAO Ran, WU Qinggang, LEI Lele, ZHONG Dingwen, HAI Jiefeng, LU Zhenhuan. A Technological Review of Modifying n-type Organic Thermoelectric Materials by Adopting the Scheme of Doping. Materials Reports, 2022, 36(10): 21040015-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040015  或          http://www.mater-rep.com/CN/Y2022/V36/I10/21040015
1 Yi Z T, He G Q. Materials Reports A: Review Papers, 2018, 32(10), 3332 (in Chinese).
义志涛, 何国强.材料导报:综述篇, 2018, 32(10), 3332.
2 Root S E, Savagatrup S, Printz A D, et al. Chemical Reviews, 2017, 117(9), 6467.
3 Russ B, Glaudell A, Urban J J, et al. Nature, 2016, 1, 16050.
4 Li X, Xie H, Yang B, et al. Materials Reports, 2020, 34(Z1), 43 (in Chinese).
李鑫, 谢辉, 杨宾, 等.材料导报, 2020, 34(Z1), 43.
5 Snyder G, Toberer E. Nature Materials, 2008, 7(2), 105.
6 Zhang Q, Sun Y, Xu W, et al. Advance Materials, 2014, 26, 6829.
7 Sun Y, Qiu L, Tang L, et al. Advance Materials, 2016, 28(17), 3351.
8 Wang R L, Ruan H B. Journal of Chongqing University of Technology (Natural Science), 2015,29(5), 33.
王然龙, 阮海波. 重庆理工大学学报(自然科学), 2015,29(5), 33.
9 Zhang F, Di C A. Chemistry of Materials, 2020, 32(7), 2688.
10 Lee S, Kim S, Pathak A, et al. Macromolecular Research, 2020, 28(6), 531.
11 Wu H, Huang Y, Xu F, et al. Advance Materials, 2016, 28(45), 9881.
12 Zhang L, Lin S, Hua T, et al. Advance Energy Materials, 2018, 8, 1700524.
13 We J H, Kim S J, Cho B J. Energy, 2014, 73, 506.
14 Gao J, Miao L, Zhang B, et al. Journal of Functional Polymer, 2017, 30(2), 142 (in Chinese).
高杰, 苗蕾, 张斌, 等. 功能高分子学报, 2017, 30(2), 142.
15 Xu S D, Shi X L, Matthew D, et al. Progress in Materials Science, 2021, 121, 100840.
16 Hynynen J, Kiefer D, Yu L, et al. Macromolecules, 2017, 50, 8140.
17 Qu S, Yao Q, Wang L, et al. NPG Asia Materials, 2016, 8(7), 292.
18 Sun Y, Di C A, Xu W, et al. Advance Electronic Materials, 2019, 5, 1800825.
19 Cho C, Culebras M, Wallace K, L et al. Nano Energy, 2016, 28, 426.
20 Hamidi-Sakr A, Biniek L, Bantignies J L, et al. Advance Function Materials, 2017, 27, 1700173.
21 Shi X L, Chen W Y, Zhang T, et al. Energy & Environmental Science, 2021, 14, 729.
22 Yan H, Chen Z, Zheng Y et al. Nature, 2009, 457(7230), 679.
23 Howard E K, Jerainne J, Andrew J, et al. Journal of the American Che-mical Society, 2000, 122(32), 7787.
24 Katz H E, Lovinger A J, Johnson J, et al. Nature, 2000, 404, 478.
25 Ma W, Shi K, Wu Y, et al. ACS Applied Materials & Interfaces, 2016, 8(37), 24737.
26 Zhang Q, Sun Y, Xu W, et al. Advance Materials, 2014, 26, 6829.
27 Un H I, Gregory S A, Mohapatra S K, et al. Advance Energy Materials, 2019, 9(24), 1.
28 Benjamin D N, Song G, Selina O, et al. Journal of the American Chemical Society, 2013, 135(40), 15018.
29 Bin Z, Li J, Wang L, et al. Energy & Environmental Science, 2016, 9(11), 3424
30 Conrad B, William R D, Maurice M. The Journal of Organic Chemistry, 1998, 63(16), 5385.
31 Manabu K, Muneaki T, Suguru K, et al. Tetrahedron Letter, 2000, 41, 81.
32 Yuan D, Huang D, Zhang C, et al. ACS Applied Materials & Interfaces, 2017, 9(34), 28795.
33 Perry E E, Chiu C Y, Moudgil K, et al. Chemistry of Materials, 2017, 29(22), 9742.
34 Lu Y, Yu Z D, Liu Y, et al. Journal of the American Chemical Society, 2020, 142(36), 15340.
35 Zhao X, Madan D, Cheng Y, et al. Advance Materials, 2017, 29, 1606928.
36 Shi K, Lu Z Y, Yu Z D, et al. Advance Electronic Materials, 2017, 3, 1700164.
37 Shin S K, Seunghwan B, Won H J. Chemical Communications, 2015, 51, 17413.
38 Salzmann I, Heimel G, Oehzelt M, et al. Accounts of Chemical Research, 2016, 49(3), 370.
39 Kroon R, Mengistie D A, Kiefer D, et al. Chemical Society Reviews, 2016, 45(22), 6147.
40 Wang S, Sun H, Ail U, et al. Advance Materials, 2016, 28(48), 10764.
41 Gao C, Chen G. Small, 2018, 14(12), 1703453.
42 Wei C, Zou J, Zhu R, et al. Dyes and Pigments, 2017, 136, 434.
43 Zhang C, Zang Y, Gann E, et al. Journal of the American Chemical So-ciety, 2014, 136(46), 16176.
44 Yuan D, Huang D, Rivero S M, et al. Chem, 2019, 5(4), 964.
45 Huang D, Wang C, Zou Y, et al. Angewandte Chemie International Edition, 2016, 55(36), 10672.
46 Huang D, Yao H, Cui Y, et al. Journal of the American Chemical Society, 2017, 139(37), 13013.
47 Naab B D, Gu X, Kurosawa T, et al. Advance Electronic Materials, 2016, 2, 1600004.
48 Lu Y, Wang J Y, Pei J. Chemistry of Materials, 2019, 31(17), 6412.
49 Lei T, Dou J H, Cao X Y, et al. Journal of the American Chemical Society, 2013, 135(33), 12168.
50 Shi K, Zhang F L, Di C A, et al. Journal of the American Chemical So-ciety, 2015, 137(22), 6979.
51 Lu Y, Yu Z D, Zhang R Z, et al. Angewandte Chemie International Edition, 2019, 58(33), 11390.
52 Bardagot O, Kubik P, Marszalek T, et al. Advance Function Materials, 2020, 30, 2000449.
53 Yang C Y, Ding Y F, Huang D, et al. Nature Communications, 2020, 11(1), 3292.
54 Schlitz R A, Brunetti F G, Glaudell A M, et al. Advance Materials, 2014, 26(18), 2825.
55 Russ B, Robb M J, Brunetti F G, et al. Advance Materials, 2014, 26(21), 3473.
56 Madan D, Zhao X, Ireland R M, et al. APL Materials, 2017, 5, 086106.
57 Wang Y, Nakano M, Michinobu T, et al. Macromolecules, 2017, 50(3), 857.
58 Liu J, Qiu L, Alessandri R, et al. Advance Materials, 2018, 30(7), 1704630.
59 Kiefer D, Giovannitti A, Sun H, et al. ACS Energy Letters, 2018, 3, 278.
60 Wang S, Sun H, Erdmann T, et al. Advance Materials, 2018, 30(31), 1801898.
61 Liu J, Ye G, Zee B V, et al. Advance Materials, 2018, 30(44), 1804290.
62 Wang Y, Takimiya K. Advance Materials, 2020, 32(30), 2002060.
63 Zhang C, Zhu X. Advance Function Materials, 2020, 30, 2000765.
64 Yang C Y, Jin W L, Wang J, et al. Advance Materials, 2018, 30(43), 1802850.
65 Yan X, Xiong M, Li J T, et al. Journal of the American Chemical Society, 2019, 141(51), 20215.
66 Wang S, Sun H, Ail U, et al. Advance Materials, 2016, 28, 10764.
67 Liu J, Shi Y, Dong J, et al. ACS Energy Letters, 2019, 4(7), 1556.
68 Wei J, Zhao L L, Zhang Q, et al. Materials Reports A: Review Papers, 2017, 31(1), 84 (in Chinese).
魏剑, 赵莉莉, 张倩, 等.材料导报:综述篇, 2017, 31(1), 84.
69 Dong J, Liu W, Li H, et al. Journal of Materials Chemistry A, 2013, 1, 1253.
70 Li S, Fan T, Liu X, et al. ACS Applied Materials & Interfaces, 2017, 9(4), 3677.
71 Baughman R H, Zakhidov A A, de Heer W A. Science, 2002, 297, 787.
72 Avery A D, Zhou B H, Lee J, et al. Nature Energy, 2016, 1, 16033.
73 Nonoguchi Y, Nakano M, Murayama T, et al. Advance Function Mate-rials, 2016, 26(18), 3021.
74 Zhou W, Fan Q, Zhang Q, et al. Nature Communications, 2017, 8, 14886.
75 Chen R, Tang J, Yan Y, et al. Advance Materials Technology, 2020, 5, 2000288.
76 Kim J Y, Grossman J C. Nano Letters, 2016, 16(7), 4203.
77 Sumino M, Harada K, Ikeda M, et al. Applied Physics Letters, 2011, 99(9), 1.
78 Wei P, Oh J H, Dong G, et al. Journal of the American Chemical Society, 2010, 132(26), 8852.
79 Liu J, Qiu L, Portale G, et al. Advance Materials, 2017, 29, 1701641.
80 Liu J, Qiu L, Portale G, et al. Nano Energy, 2018, 52, 183.
81 Liu J, Garman M P, Dong J, et al. Energy Materials, 2019, 2, 6664.
82 Chakraborty P, Ma T, Zahiri A H, et al. Advances In Condensed Matter Physics, DOI.org/10.1155/2018/3898479.
83 Deng Y, Zhang Y Z, Wang Y, et al. Acta Aeronautica et Astronautica Sinica, 2014, 35(10), 2733 (in Chinese).
邓元, 张义政, 王瑶,等. 航空学报, 2014, 35(10), 2733.
84 Liang J, Wang T, Qiu P, et al. Energy & Environmental Science, 2019, 12, 2983.
85 Brito F P, Figueiredo L, Rocha L A, et al. Journal of Electronic Mate-rials, 2016, 45(3), 1711.
86 Sun Y, Sheng P, Di C, et al. Advance Materials, 2012, 24, 932.
87 Ferhat S, Domain C, Vidal J, et al. Sustainable Energy & Fuels, 2018, 2, 199.
[1] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[2] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[3] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[4] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[5] 陈刚, 熊施权, 吕洪, 郝传璞. 电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究[J]. 材料导报, 2022, 36(3): 20110206-6.
[6] 向阳, 熊昆, 张海东, 陈佳, 余林键. 电催化尿素氧化的镍基催化剂表界面调控[J]. 材料导报, 2022, 36(10): 20080297-8.
[7] 丁苏莹, 吴子华, 谢华清, 王元元, 栾福园, 余思琦. 铜铟镓硒太阳能电池性能提升方法[J]. 材料导报, 2021, 35(z2): 1-7.
[8] 田春, 唐元洪. 硅纳米管的各种制备方法[J]. 材料导报, 2021, 35(z2): 38-45.
[9] 宋金涛, 刘海涛, 宋克兴, 安士忠, 程楚, 华云筱, 周延军, 张凌亮, 王国杰, 田安福, 杨璐瑶. 稀土铈与磷相互作用对纯铜晶粒尺寸和导电性能的影响[J]. 材料导报, 2021, 35(z2): 329-332.
[10] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[11] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[12] 江文正, 章卫钢, 子绚, 刘贤淼, 张文标, 李文珠. 二次炭化温度对竹炭导电性能及结构的影响[J]. 材料导报, 2021, 35(8): 8023-8027.
[13] 汪冲, 朱晓云, 龙晋明. 掺杂导电增强相对铝电极性能的影响[J]. 材料导报, 2021, 35(8): 8082-8087.
[14] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[15] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed