Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8023-8027    https://doi.org/10.11896/cldb.19120221
  无机非金属及其复合材料 |
二次炭化温度对竹炭导电性能及结构的影响
江文正1, 章卫钢1, 子绚2, 刘贤淼2, 张文标1, 李文珠1
1 浙江农林大学工程学院,杭州 311300
2 国际竹藤中心,北京 100102
Effect of Recarbonization Temperature on Conductive Properties and Structure of Bamboo Charcoal
JIANG Wenzheng1, ZHANG Weigang1, ZI Xuan2, LIU Xianmiao2, ZHANG Wenbiao1, LI Wenzhu1
1 College of Engineering, Zhejiang A&F University, Hangzhou 311300, China
2 International Center for Bamboo and Rattan, Beijing 100102, China
下载:  全 文 ( PDF ) ( 11679KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 竹炭(Bamboo charcoal, BC)有一定的导电性能,具有被应用于电气材料领域的潜力。为提高竹炭的导电性能,本研究以绝缘竹炭为原料进行二次炭化,研究了二次炭化温度对竹炭理化性能及结构的影响。采用元素分析仪、量热仪、比表面积及孔隙度分析仪、红外光谱仪、拉曼光谱仪、X射线衍射仪、扫描电子显微镜和透射电子显微镜对竹炭的基本理化性能及微观结构进行测试。结果表明,700~1 500 ℃内,随着炭化温度的升高,竹炭的比表面积先增大后减小,碳含量从82.45%增加至96.87%,固定碳含量从81.22%增加至96.3%,热值从31.385 MJ/kg增加至34.904 MJ/kg,电导率从10-8 S/cm增加至92.94 S/cm;二次炭化降低了竹炭的极性,并且在纤维帽和细胞壁上形成许多大孔结构,竹炭的这种特征使其可作为复合材料的增强相;二次炭化后,竹炭形成弧形石墨边缘,石墨化程度随着温度的升高逐渐增大,BC1500的(002)峰对应的微晶尺寸为0.334 nm,接近石墨条纹间距0.34 nm。二次炭化显著增强了竹炭的导电性能,这是碳含量提高、细胞壁和纤维帽进一步收缩以及弧形石墨边缘形成的综合结果。二次炭化为高品质炭的制备提供了一种简单高效的方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江文正
章卫钢
子绚
刘贤淼
张文标
李文珠
关键词:  竹炭  电导率  石墨化  二次炭化    
Abstract: Bamboo charcoal has certain electrical conductivity and the potential to be applied in the field of electrical materials. In order to improve the electrical conductivity of bamboo charcoal, this paper used insulating bamboo charcoal as the raw material for recarbonization.The physical and chemical properties and structure of bamboo charcoal after different temperatures recarbonization were studied.Elemental analyzer, calorimeter, specific surface area and porosity analyzer, infrared spectrometer, Raman spectrometer, X-ray diffractometer, scanning electron microscope and transmission electron microscope were used to measure the basic physical and chemical properties and microstructure of bamboo charcoal.The results showed that as the recarbonization temperature increased, the specific surface area of bamboo charcoal increased first and then decreased within the range of 700—1 500 ℃. The C content increased from 82.45% to 96.87%, the fixed carbon content increased from 81.22% to 96.3%, and the calorific value from 31.385 MJ/kg to 34.904 MJ/kg, the conductivity increased from 10-8 S/cm to 92.94 S/cm. The recarbonization reduced the polarity of bamboo charcoal and resulted in the formation of many macroporous structures on the fiber cap and cell wall. This feature of bamboo charcoal can be advantage for bamboo charcoal to be used as a reinforcing phase for composite materials. After the recarbonization, the bamboo charcoal formed curved graphite edges, and the degree of graphitization gradually increased with the increase of temperature. The crystallite size corresponding to the (002) peak of BC1500 was 0.334 nm, which was close to the graphite stripe spacing of 0.34 nm.The recarbonization significantly enhanced the conductivity of bamboo charcoal, which was the result of increased carbon content, further shrinkage of cell walls and fiber caps, and formation of curved graphite edges.Recarbonization provides a simple and efficient method for the preparation of high-quality charcoal.
Key words:  bamboo charcoal    electrical conductivity    graphitization    recarbonization
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TB321  
基金资助: 国家十三五重点研发计划任务(2018YFF0214501);浙江省重点研发计划项目(2018C02008)
通讯作者:  zwb@zafu.edu.cn   
作者简介:  江文正,浙江农林大学硕士研究生,主要从事生物炭及其复合材料的研究。
张文标,教授,博士,博士研究生导师。主要从事竹材工业化利用、生物炭等方面的教学与研究工作。竹炭方面的研究和标准制定先后获得浙江省科技进步一等奖、国家科技进步二等奖和浙江省标准创新贡献奖。
引用本文:    
江文正, 章卫钢, 子绚, 刘贤淼, 张文标, 李文珠. 二次炭化温度对竹炭导电性能及结构的影响[J]. 材料导报, 2021, 35(8): 8023-8027.
JIANG Wenzheng, ZHANG Weigang, ZI Xuan, LIU Xianmiao, ZHANG Wenbiao, LI Wenzhu. Effect of Recarbonization Temperature on Conductive Properties and Structure of Bamboo Charcoal. Materials Reports, 2021, 35(8): 8023-8027.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120221  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8023
1 Zhang W B, Ye L M, Zhang H, et al. Journal of Bamboo Research,2001(2),49(in Chinese).
张文标,叶良明,张宏,等.竹子研究汇刊,2001(2),49.
2 Liu W F, Zhao L, Cui X, et al. Journal of Bamboo Research,2019,38(2),47(in Chinese).
刘文芳,赵磊,崔箫,等.竹子学报,2019,38(2),47.
3 Zhang W B, Li W Z,Yan G Q. Journal of Forestry Engineering,2016,1(2),59(in Chinese).
张文标,李文珠,闫国祺.林业工程学报,2016,1(2),59.
4 Liang G Y, Zhang Y D, Sun Y, et al. Journal of Forestry Engineering,2019(1),81(in Chinese).
梁广元,张一丁,孙毅,等.林业工程学报,2019(1),81.
5 Liao P, Malik Ismael Z, Zhang W, et al. Chemical Engineering Journal,2012,195-196,339.
6 Liao P, Zhan Z, Dai J, et al. Chemical Engineering Journal,2013,228,496.
7 Wen Y, Song J, Chen J, et al. BioResources,2017,12(1),1288.
8 Li S, Huang A, Chen Y J, et al. Composites Part B: Engineering,2018,153,277.
9 Li S, Li X, Chen C, et al. Composites Science and Technology,2016,132,31.
10 Zhao L, Wang S S, Jiang W Z, et al. China Plastics,2019,33(11),6(in Chinese).
赵磊,王珊珊,江文正,等.中国塑料,2019,33(11),6.
11 Guo Z H, Zhang Y, Li W Z, et al. Functional Materials,2019,50(7),7210.
郭子豪,张雨,李文珠,等.功能材料,2019,50(7),7210.
12 Zhang W B, Xu C X, Yan G Q, et al. Journal of Zhejiang A & F University,2014,31(4),639(in Chinese).
张文标,徐冲霄,闫国祺,等.浙江农林大学学报,2014,31(4),639.
13 Fu Q H, Weng Y M, Zhang W B, et al. Journal of Zhejiang Forestry Science and Technology,2003 (4),16(in Chinese).
傅秋华,翁益明,张文标,等.浙江林业科技,2003(4),16.
14 Kwon J H, Park S B, Ayrilmis N, et al. Composites Part B: Engineering,2013,46,102.
15 Chen C, Sun K, Wang A, et al. BioResources,2018,13(2),3165.
16 Major I, Pin J M, Behazin E, et al. Green Chemistry,2018,20(10),2269.
17 Ma Z, Sun Q, Ye J, et al. Journal of Analytical and Applied Pyrolysis,2016,117,116.
18 Zhang Y, Ma Z, Zhang Q, et al. BioResources,2017,12(3),4652.
19 Zhang W B, Hua Y K, Ye L M. Journal of Nanjing Forestry University (Natureal Sciences Edition),2002(4),47(in Chinese).
张文标,华毓坤,叶良明.南京林业大学学报(自然科学版),2002(4),47.
20 Zhang Q, Khan M U, Lin X, et al. Composites Part B: Engineering,2019,175,107151.
21 Gabhi R S, Kirk D W, Jia C Q. Carbon,2017,116,435.
22 Diehl B G, Brown N R, Frantz C W, et al. Carbon,2013,60,531.
23 Ma Z, Yang Y, Ma Q, et al. Journal of Analytical and Applied Pyrolysis,2017,127,350.
24 Li S, Li D. Materials Letters,2014,137,409.
25 Gutiérrez-Pardo A, Ramírez-Rico J, Cabezas-Rodríguez R, et al. Journal of Power Sources,2015,278,18.
26 Chen C,Wang A,Sun K,et al. Chemistry and Industry of Forest Products,2019,39(3),94(in Chinese).
陈超,王傲,孙康,等.林产化学与工业,2019,39(3),94.
27 Xiao G, Xiao R, Jin B, et al. Journal of Biobased Materials and Bioenergy,2010,4(4),426.
[1] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[2] 董大彰, 赵梦媛, 解昊, 边凌峰, 杨星, 孟彬. Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响[J]. 材料导报, 2020, 34(4): 4001-4006.
[3] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[4] 林欢, 寇爱静, 张建伦, 董华. 电流热退火效应对碳纤维导热性能的影响[J]. 材料导报, 2020, 34(14): 14198-14203.
[5] 王珊珊, 赵磊, 周海瑛, 李文珠, 张文标. 次磷酸铝对竹炭/聚乳酸复合材料阻燃和力学性能的影响[J]. 材料导报, 2020, 34(14): 14214-14217.
[6] 吕强, 杨春利, 陈红, 马欣宇, 陈喜, 张强, 杜晶. Ni-BaCe0.7Y0.3-xTaxO3-δ(x=0,0.05,0.1)金属陶瓷氢分离膜的氢渗透性能[J]. 材料导报, 2020, 34(12): 12045-12049.
[7] 王留成, 薛蕾, 郭丹丹, 李伊光, 陈冲冲. 热解温度对竹炭黑基本性能的影响[J]. 材料导报, 2019, 33(8): 1285-1288.
[8] 崔凯, 虞澜, 刘安安, 秦梦, 宋世金, 沈艳. 具有c轴择优的CuCr1-xMgxO2多晶的热电输运性质及Mg掺杂效应[J]. 材料导报, 2019, 33(20): 3363-3366.
[9] 张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
[10] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[11] 劳一桂, 高运明, 王强, 李光强. 冶金离子熔体电导率测定技术进展[J]. 材料导报, 2019, 33(11): 1882-1888.
[12] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[13] 刘磊, 周海涛, 周楠, 农登, 王顺成. 时效温度和时间对新型Al-6Zn-1.1Mg合金组织性能的影响[J]. 材料导报, 2018, 32(24): 4292-4296.
[14] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[15] 王松林, 徐向棋, 陈子潘, 孟广耀. 掺碱土金属的双稀土铬酸盐(Pr0.5Nd0.5)0.7M0.3CrO3-δ(M=Sr, Ca)用于SOFC连接材料[J]. 材料导报, 2018, 32(16): 2728-2732.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed