Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8017-8022    https://doi.org/10.11896/cldb.20010081
  无机非金属及其复合材料 |
花球状CuO/CeO2材料上HCN的催化消除
伊志豪, 孙杰, 李吉刚, 周添, 卫寿平, 解洪嘉, 杨育霖
中国人民解放军陆军防化学院 化学防护系,北京 102205
Catalytic Removal of HCN over Flowerlike CuO/CeO2 Materials
YI Zhihao, SUN Jie, LI Jigang, ZHOU Tian, WEI Shouping, XIE Hongjia, YANG Yulin
Chemistry Defense Department, Institute of NBC Defense, Beijing 102205, China
下载:  全 文 ( PDF ) ( 9932KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用水热法和沉积沉淀法分别合成了微米级花球状CeO2载体和含有不同质量分数CuO纳米颗粒的负载型CuO/CeO2材料。考察CuO/CeO2材料对HCN的防护时间和消除率,并与KZ09-1防毒活性炭样品对HCN的防护性能进行比较,进而评价CuO/CeO2催化材料对HCN的防护性能。催化材料在25 ℃、体积空速为120 000 h-1、水汽体积分数为5%的反应条件下,对130 mg/m3 HCN的防护性能为:10% CuO/CeO2>15% CuO/CeO2>5% CuO/CeO2>KZ091>3% CuO/CeO2>1% CuO/CeO2。考察反应温度对HCN消除率的影响发现,当反应温度为100 ℃、反应时间为2 h时,催化材料对HCN的消除率可达98%。考察不同反应温度条件下反应产物的选择性,对HCN在催化材料上的反应机理进行推测,当反应温度为25~50 ℃时,催化材料对HCN的消除以化学吸附为主,伴随有催化水解和催化氧化反应;当反应温度为50~100 ℃时,HCN在催化材料表面通过化学吸附、催化水解及催化氧化反应消除,其中催化水解和催化氧化占主导作用;当反应温度为100~200 ℃时,HCN在催化材料表面通过化学吸附、催化水解、催化氧化以及NH3-SCR反应协同消除。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
伊志豪
孙杰
李吉刚
周添
卫寿平
解洪嘉
杨育霖
关键词:  CuO/CeO2  防护时间  化学吸附  催化水解  催化氧化  NH3-SCR    
Abstract: The micron-flowerlike mesoporous spheres CeO2 support and CuO/CeO2 catalytic materials with a series of CuO loading were prepared by hydrothermal method and deposition-precipitation method, respectively. To evaluate the defense ability of the CuO/CeO2 catalyst materials, the protection time and elimination rate towards HCN were investigated and compared with standard KZ09-1 active carbon material which was usually employed in the gas mask. The results showed that the defense ability of different catalytic materials followed this order: 10% CuO/CeO2>15% CuO/CeO2>5% CuO/CeO2>KZ091>3% CuO/CeO2>1% CuO/CeO2 at the condition of 25 ℃, 120 000 h-1 and 5% H2O. The effect of reaction temperature conditions on the elimination rate of HCN was investigated which indicated the HCN could be removed 98% within 2 h at 100 ℃. The reaction mechanism was speculated by detecting the reaction products selectivity at different reaction temperature. It was shown that HCN was mainly eliminated by chemisorption and catalytic hydrolysis at lower temperature region of 25—50 ℃; chemisorption, catalytic hydrolysis, catalytic oxidation at temperature region of 50—110 ℃ when catalytic hydrolysis and catalytic oxidation played a major role; chemisorption, catalytic hydrolysis, catalytic oxidation and NH3-SCR reactions simultaneously at higher temperature region of 100—200 ℃
Key words:  CuO/CeO2    defense time    chemsorption    catalyst hydrolysis    catalyst oxidation    NH3-SCR
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  X131.1  
基金资助: 国家人防办项目([2014]251-61);军内科研项目(装综[2018]635号)
通讯作者:  magnsun@mail.tsinghua.edu.cn   
作者简介:  伊志豪,2018年6月毕业于河南理工大学,获得理学学士学位。现为陆军防化学院在读研究生,在孙杰教授的指导下进行研究,主要研究方向为防护材料。
孙杰,陆军防化学院化学防护系副主任,教授,博士研究生导师。从事的应用研究方向主要包括防护材料、锂电池热失控致灾与处理、直接液体燃料电池、制氢技术等。基础研究方向包括电化学催化、重整催化。
引用本文:    
伊志豪, 孙杰, 李吉刚, 周添, 卫寿平, 解洪嘉, 杨育霖. 花球状CuO/CeO2材料上HCN的催化消除[J]. 材料导报, 2021, 35(8): 8017-8022.
YI Zhihao, SUN Jie, LI Jigang, ZHOU Tian, WEI Shouping, XIE Hongjia, YANG Yulin. Catalytic Removal of HCN over Flowerlike CuO/CeO2 Materials. Materials Reports, 2021, 35(8): 8017-8022.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010081  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8017
1 Wang H B, Liu X L. Chinese Journal of Medicine,2009,44(2),73(in Chinese).
王汉斌,刘晓玲.中国医刊,2009,44(2),73.
2 Lin J Y, Yan Y P. Journal of Chongqing Technology and Business University,2020,37(5),88(in Chinese).
林静怡,杨宜平.重庆工商大学学报(自然科学版),2020,37(5),88.
3 Tao X J, Cui J H, Gao L J. Journal of Taishan University,1999(3),29(in Chinese).
陶秀俊,崔建华,高丽君.泰山学院学报,1999(3),29.
4 Wang C L, Tan H Z, Wang X B, et al. Journal of Engineering Thermophysics,2009(11),1977(in Chinese).
王聪玲,谭厚章,王学斌,等.工程热物理学报,2009(11),1977.
5 Zhang F M, Li K X, Lv C X,et al. New Carbon Materials,2003,18(2),151(in Chinese).
张奉民,李开喜,吕春祥,等.新型炭材料,2003,18(2),151.
6 Radtke F, Koeppel R, Baiker A. Applied Catalysis A General,1994,107(2),L125.
7 Jiang M, Ning P, Bai Y W, et al. In: 2011 International Conference on Electric Technology and Civil Engineering. Lushan,2011,pp.3850.
8 Baum M M, Moss J A, Pastel S H, et al. Environmental Science and Technology,2007,41(3),857.
9 Marsh J D F, Newling W B S, Rich J. Journal of Applied Chemistry,2007,2(12),681.
10 Kröcher O, Elsener M. Applied Catalysis B Environmental,2009,92(1),75.
11 Wang Q, Wang X Q, Wang L L, et al. Microporous and Mesoporous Materials,2019,282,260.
12 Miyadera T. Applied Catalysis B Environment,1998,16(2),155.
13 Chen F, Chen Z G, Li X Z, et al. Journal of the Chinese Ceramic Society,2011,39(3),397.
14 Huang P X, Wu F, Zhu B L, et al. Journal of Physical Chemistry B,2005,109(41),19169.
15 Sun C W, Sun J, Xiao G L, et al. The Journal of Physical Chemistry B,2006,110(27),13445.
16 Tan L, Tao Q, Gao H Y, et al. Journal of Porous Materials,2017,24(3),795.
17 She Y S, Zheng Q, Li L, et al. International Journal of Hydrogen Energy,2009,34(21),8929.
18 Yao X J, Chen L, Kong T T, et al. Chinese Journal of Catalysis,2017,38(8),1423.
19 Suzana M, Francisco P, Mastelaro V R, et al. Journal of Physical Che-mistry B,2001,105(43),10515.
20 Wen D, Lia J, Wu X D, et al. Catalysis Communications,2008,9(9),1898.
21 Wang L L, Wang X Q, Cheng J H, et al. Applied Surface Science,2018,439,213.
22 Solsona B, Tomás G, Hutchings G J, et al. Applied Catalysis A General,2009,365(2),222.
23 Jiang X Y, Lou L P, Chen Y X, et al. Journal of Molecular Catalysis A Chemical,2003,197(1),193.
24 Yan L X, Tian S L, Ning P. China Environmental Science,2015(10),2964(in Chinese).
闫林霞,田森林,宁平.中国环境科学,2015(10),2964.
25 Liang F X, Zhu H Q, Qin Z F, et al. Catalysis Letters,2008,126(3-4),353.
26 Deng C S, Li B, Dong L H, et al. Physical Chemistry Chemical Physics,2015,17(24),16092.
27 Sun C W, Li H, Chen L Q. Journal of Physics and Chemistry of Solids,2007,68(9),1785.
28 Cheng J H, Wang X Q, Ning P. In: IOP Conference Series Materials Science and Engineering. Singapore,2017,pp.231.
29 Hu Y N, Liu J, Cheng J, et al. Applied Surface Science,2018,427,843.
30 Nickolov R N, Mehandjiev D R. Journal of Colloid and Interface Science,2004,273(1),87.
31 Wang X Q, Cheng J H, Wang X Y, et al. Chemical Engineering Journal,2018,333,402.
[1] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[2] 殷珂, 陈瑞洋, 刘志明. 锰基氧化物上甲苯催化氧化的研究进展[J]. 材料导报, 2020, 34(23): 23051-23056.
[3] 冯勇超, 于庆君, 易红宏, 唐晓龙, 黄永海, 张媛媛, 庄瑞杰. MFI型分子筛在VOCs去除领域的研究进展[J]. 材料导报, 2020, 34(17): 17089-17098.
[4] 王灿, 陈天虎, 刘海波, 董仕伟, 韩正严, 束道兵, 王汉林. 纳米矿物材料净化甲醛污染的研究进展[J]. 材料导报, 2020, 34(15): 15003-15012.
[5] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[6] 王鹏飞, 邓宇, 郝丽梅, 邓橙, 赵蕾, 张新奇, 朱孟府. 铋掺杂二氧化锡/炭膜电催化膜的制备及表征[J]. 材料导报, 2019, 33(18): 3016-3020.
[7] 施露, 张杰, 陈蓉, 沈美庆, 单斌. 锰基多元氧化物的NO催化氧化研究进展[J]. 材料导报, 2019, 33(13): 2167-2173.
[8] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[9] 姚欣蕾, 周淑君, 周涵, 范同祥. 用于CO催化氧化的负载型纳米金催化剂的研究进展*[J]. CLDB, 2017, 31(9): 97-105.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed