Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6126-6131    https://doi.org/10.11896/cldb.19030155
  金属与金属基复合材料 |
旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响
蔺宏涛1, 孟强2, 王怡嵩1,2, 王家毅1, 张韵1, 江海涛1
1 北京科技大学工程技术研究院,北京 100083;
2 中国航空制造技术研究院,北京 100024
Effect of Rotation Speed on the Microstructure and Mechanical Properties of Friction Stir Welding of Joint High Strength Steel Q&P980
LIN Hongtao1, MENG Qiang2, WANG Yisong1,2, WANG Jiayi1, ZHANG Yun1, JIANG Haitao1
1 Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China;
2 Aviation Industry Corporation of China Manufacturing Technology Institute, Beijing 100024, China
下载:  全 文 ( PDF ) ( 9846KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为了促进高强度钢在汽车领域的应用,解决高强度钢在采用常规熔化焊进行焊接时出现的问题,利用搅拌摩擦焊接技术对1.2mm厚的高强度钢Q&P980进行焊接试验,并利用激光共聚焦显微镜、扫描电子显微镜、万能试验机和显微硬度计等手段研究旋转速度对高强度钢Q&P980搅拌摩擦焊接头的微观组织和力学性能的影响。研究发现,在不同旋转速度下均获得了没有缺陷的焊缝,接头组织呈典型的“碗状”组织形貌。旋转速度为200r/min时,接头搅拌区组织仍为马氏体与铁素体组织,但晶粒尺寸相比母材明显细化且马氏体含量相比母材增多。随着旋转速度的提高,马氏体含量会继续增多,旋转速度为400r/min时搅拌区组织基本全部为马氏体组织,旋转速度为600r/min时搅拌区组织为马氏体和贝氏体的混合组织。接头显微硬度结果显示,搅拌区的硬度明显高于母材,搅拌区与母材之间存在一个软化区。旋转速度为400r/min时,接头抗拉强度最高,达到1070MPa,为母材的99%,基本等同于母材的抗拉强度;接头的断后伸长率为11.2%,达到母材的50%。旋转速度为200r/min时,接头断裂于搅拌区,其他旋转速度下接头均断裂于软化区,断裂于软化区的断口形貌呈现韧性断裂特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔺宏涛
孟强
王怡嵩
王家毅
张韵
江海涛
关键词:  高强度钢Q&P980  搅拌摩擦焊  旋转速度  微观组织  力学性能    
Abstract: In order to promote the application of high strength steel in automobile field and solve the problem of high strength steel welding by conventio-nal fusion welding,friction stir welding technique was applied on 1.2 mm thick Q&P980 steel sheets at rotation speeds of 200 r/min, 300 r/min, 400 r/min and 600 r/min. The microstructure and mechanical properties of the welds were evaluated. It was found that the weld without defects was obtained at different rotation speeds, and the joint structure presented a typical “bowl-shaped” structure. At the rotation speed of 200 r/min, the microstructure of the stirring zone of the joint was still martensite and ferrite, but the grain size was obviously refined and the martensite content was obviously increased. At 400 r/min, the structure of the stirring zone was almost all martensite. At 600 r/min, a mixed martensite and bainite microstructure was in the stirring zone. The results of microhardness showed that the hardness of the stiring zone was obviously higher than that of the base metal, and there was a softening zone between the stirring zone and the base metal. When the rotation speed was 400 r/min, the tensile strength of the joint was the highest, reaching 1 070 MPa, 99% of the base metal, and the elongation was 11.2%, 50% of the base metal. The joint was fractured in the stirring zone at the rotation speed of 200 r/min, it was fractured near the softening zone of the joint at other rotation speeds, and the fracture was a ductile fracture.
Key words:  high strength steel Q&P980    friction stir welding    rotation speed    microstructure    mechanical properties
               出版日期:  2020-03-25      发布日期:  2020-03-12
ZTFLH:  TG456.9  
基金资助: 国家重点研发计划(2016YFB0101606)
作者简介:  蔺宏涛,北京科技大学在读博士研究生。2004年9月至2008年6月,在河南科技大学获得冶金工程专业学士学位;2008年9月至2011年6月,在内蒙古科技大学获得钢铁冶金专业硕士学位;2011年8月至2014年1月在武汉钢铁股份有限公司工作;2014年2月至2016年8月在国家镁及镁合金产品质量监督检验中心工作;2016年9月至今,在北京科技大学工程技术研究院攻读材料科学与工程专业博士学位。目前,参与国家重点研发计划等多个项目,研究方向为搅拌摩擦焊接;江海涛,北京科技大学研究员,博士研究生导师。2004年博士研究生毕业于西北工业大学,师从李淼泉教授,2004—2006年在北京科技大学材料学院从事博士后工作。2006年至今在北京科技大学高效轧制国家工程研究中心 (北京科技大学工程技术研究院)工作,主要从事钢铁、有色金属材料的品种开发及板带生产技术研究。与鞍钢、武钢、邯钢、马钢等国内大中型钢铁企业合作,开发了X42—X100管线钢、热 (冷)轧汽车板、容器锅炉板、集装箱板等钢铁板带产品;与美国波音等企业进行了高成形性能镁合金的开发等研究;与湖南金天钛业等合作进行了TA2、TC4钛合金板材及钛钢复合板等材料开发及板带生产工艺研究。在研国家自然科学基金、国家重点研发计划、北京市科技计划项目十余项,发表学术论文二百余篇,获授权专利十余项。
引用本文:    
蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
LIN Hongtao, MENG Qiang, WANG Yisong, WANG Jiayi, ZHANG Yun, JIANG Haitao. Effect of Rotation Speed on the Microstructure and Mechanical Properties of Friction Stir Welding of Joint High Strength Steel Q&P980. Materials Reports, 2020, 34(6): 6126-6131.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030155  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6126
1 Wang D F. The development of lightweight automobiles in China, Beijing Institute of Technology Press, China, 2010 (in Chinese).
王登峰. 中国汽车轻量化发展, 北京理工大学出版社, 2015.
2 Jiang H T, Tang D, Mi Z L. Journal of Iron and Steel Research, 2007,19 (8),1 (in Chinese).
江海涛, 唐荻, 米振莉. 钢铁研究学报, 2007,19 (8),1.
3 Speer J G, Edmonds D V, Rizzo F C. Current Opinion in Solid State and Materials Science, 2004, 8 (3-4), 219.
4 Speer J G, Rizzo F C, Edmonds D V. Materials Research, 2005, 8 (4),417.
5 Li Y J. Welding of high strength steel, Metallurgical Industry Press, China, 2010 (in Chinese).
李亚江. 高强钢的焊接, 冶金工业出版社, 2010.
6 Guo W, Wan Z, Peng P, et al. Journal of Materials Processing Technology, 2018, 256, 229.
7 Li X J, Huang J, Pan H, et al. Chinese Journal of Lasers, 2019,46 (3),1 (in Chinese).
李学军, 黄坚, 潘华, 等.中国激光, 2019, 46 (3),1.
8 Thomas W M,Nicholas E D, Needham J C, et al. U K. patent application, UK9125978, 1991.
9 Mishra R S, Ma Z Y. Materials Science & Engineering R, 2010, 50 (1),1.
10 Padhy G K, Wu C S, Gao S. Journal of Materials Science & Technology, 2018, 34 (1),1.
11 Liu F C, Hovanski Y, Miles M P, et al. Journal of Materials Science & Technology, 2018, 34 (1),39.
12 Meshram S D, Paradkar A G, Reddy G M, et al. Journal of Manufactu-ring Processes, 2017, 25,94.
13 Gonçalo S, Sarikka T, Pedro V, et al. Welding in the World, 2018, 62 (6),1173.
14 Mironov S, Sato Y S, Yoneyama S, et al. Materials Science & Enginee-ring A, 2018, 717,26.
15 Mahmoudiniya M, Amir H K, Shahram K, et al. Materials Science and Engineering A, 2018, 737,213.
16 Li Y J, Du D X, Fu R D. Journal of Mechanical Engineering, 2015, 51 (22),47 (in Chinese).
李艺君, 杜东旭, 付瑞东.机械工程学报, 2015, 51 (22),47.
17 Cui L, Zhang C, Liu Y, et al. Journal of Iron and Steel Research International, 2018, 25 (5),477.
18 Khodir S A, Morisada Y, Ueji R, et al. Materials Science & Engineering A, 2012, 558,572.
19 Wang J, Yang L, Sun M, et al. Materials & Design, 2016, 97,118.
20 Barnes S J, Steuwer A, Mahawish S, et al. Materials Science & Enginee-ring A, 2008, 492 (1-2),35.
21 Ghosh M, Kumar K, Mishra R S. Materials Science & Engineering A, 2011, 528 (28),8111.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[6] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[7] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[8] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[9] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[10] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[11] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[12] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[13] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[14] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[15] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed