Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (9): 1412-1416    https://doi.org/10.11896/j.issn.1005-023X.2018.09.003
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性
刘仪柯1,唐雅琴1,蒋良兴2,刘芳洋2,秦 勤2,张 坤3
1 贵州理工学院材料与冶金工程学院,贵阳 550003;
2 中南大学冶金与环境学院, 长沙 410083;
3 格林美股份有限公司,深圳 518101
Photovoltaic Characteristics of Cu2ZnSn(SxSe1-x)4 Thin Films Synthesizedvia the Process of Cu-Zn-Sn Presputtering and SubsequentSulfurization (Selenization) Annealing
LIU Yike1, TANG Yaqin1, JIANG Liangxing2, LIU Fangyang2, QIN Qin2, ZHANG Kun3
1 School of Materials and Metallurgical Engineering, Guizhou Institute of Technology, Guiyang 550003;
2 School of Metallurgy and Environment, Central South University, Changsha 410083;
3 Gem Incorporated Company, Shenzhen 518101
下载:  全 文 ( PDF ) ( 1697KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用溅射工艺制备Cu-Zn-Sn金属预制层并尝试在多种退火方案(硫化退火、硒化退火、不同温度下硫化后硒化)下对其进行退火处理,探索出一种只需采用金属预制层即可完成CZTSSe制备的退火工艺制度。通过扫描电镜对比研究了不同退火制度下Cu2ZnSn(SxSe1-x)4薄膜的形貌差异,发现低温硫化后硒化工艺可以有效减少因硫化温度过高引起的薄膜中孔洞较多的问题,有利于薄膜的平整与致密化。在此基础上,采用X射线荧光光谱、扫描电镜、X射线衍射及拉曼光谱对不同硫化温度(200 ℃、300 ℃、 400 ℃、 500 ℃)下硫化后硒化工艺制备的Cu2ZnSn(SxSe1-x)4薄膜的成分、形貌、物相结构及结晶性能进行了表征和分析。结果表明,300 ℃下硫化后硒化获得的Cu2ZnSn(SxSe1-x)4较其他温度下硫化后硒化获得的产物有着更好的形貌及结晶性能,其器件的光电转换效率为2.09%,远高于500 ℃下硫化后硒化工艺所得薄膜器件的效率(0.94%)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘仪柯
唐雅琴
蒋良兴
刘芳洋
秦 勤
张 坤
关键词:  薄膜太阳电池  铜锌锡硫硒  溅射预制层  硫化  硒化  退火制度    
Abstract: By applying several annealing schemes (sulfurization, selenization, sulfurization at various temperatures→selenization) to the annealing process of the magnetron sputtered Cu-Zn-Sn coating, this work made a successful attempt to develop an annealing scheme that enables the production of CZTSSe thin film on the basis of merely a presputtered metallic coating. We conducted the morphological analyses upon the Cu2ZnSn(SxSe1-x)4 films formed through different annealing schemes and revealed that a relatively low sulfurization temperatures can benefit the flatness and densification of the resultant film by attenuating the heat-induced porosification effect. A comparative study was then carried out upon the effect of the sulfurization temperature (200 ℃, 300 ℃, 400 ℃, 500 ℃) on the properties of Cu2ZnSn(SxSe1-x)4 thin films, by measuring the films’ composition, morphology, structure and crystallinity via XRF, SEM, XRD and Raman scattering. Among the above competitors, the Cu2ZnSn(SxSe1-x)4 film obtained with 300 ℃ sulfurization→selenization exhibits the most favorable morphology and crystallinity, as well as a power conversion efficiency of 2.09% which far outperforms the one with 500 ℃ sulfurization→selenization (0.94%) owing to the boost of short-circuit current and fill factor.
Key words:  thin film solar cell    Cu2ZnSn(SxSe1-x)4    presputtering    sulfurization    selenization    annealing scheme
出版日期:  2018-05-10      发布日期:  2018-07-06
ZTFLH:  O472.8  
基金资助: 国家自然科学基金(51674298;51604088);贵州省科技计划项目(黔科合基础[2017]1064;黔科合LH字[2015]7091)
通讯作者:  蒋良兴:通信作者,男,1982年生,博士,副教授,主要从事薄膜太阳电池材料与功能阳极材料的研究 E-mail:lxjiang@csu.edu.cn   
作者简介:  刘仪柯:男,1981年生,博士,副教授,主要从事新能源材料与器件和纳米功能材料等研究 E-mail:liuyikecsu@163.com
引用本文:    
刘仪柯, 唐雅琴, 蒋良兴, 刘芳洋, 秦 勤, 张 坤. 溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性[J]. 《材料导报》期刊社, 2018, 32(9): 1412-1416.
LIU Yike, TANG Yaqin, JIANG Liangxing, LIU Fangyang, QIN Qin, ZHANG Kun. Photovoltaic Characteristics of Cu2ZnSn(SxSe1-x)4 Thin Films Synthesizedvia the Process of Cu-Zn-Sn Presputtering and SubsequentSulfurization (Selenization) Annealing. Materials Reports, 2018, 32(9): 1412-1416.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.09.003  或          https://www.mater-rep.com/CN/Y2018/V32/I9/1412
1 Todorov T, Gunawan O, Chey S J, et al. Progress towards marke-table earth-abundant chalcogenide solar cells[J].Thin Solid Films,2011,519(21):7378.
2 Sun Y X, Zhang Y Z, Wang H, et al.Novel non-hydrazine solution processing of earth-abundant Cu2ZnSn(S,Se)4 absorbers for thin-film solar cells[J].Journal of Materials Chemistry A,2013,1(23):6880.
3 Kim J, Hiroi H, Todorov T K, et al. High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter[J].Advanced Materials,2014,26(44):7427.
4 Zhang K, Liu F Y, Lai Y Q, et al. In situ growth and characterization of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering for solar cells[J].Acta Physica Sinica,2011,60(2):790(in Chinese).
张坤,刘芳洋,赖延清,等.太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征[J].物理学报,2011,60(2):790.
5 Ericson T, Kubart T, Scragg J J, et al. Reactive sputtering of precursors for Cu2ZnSnS4 thin film solar cells[J].Thin Solid Films,2012,520(24):7093.
6 Weber A, Mainz R, Schock H W. On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum[J].Journal of Applied Physics,2010,107(1):013516.
7 Wang K, Gunawan O, Todorov T, et al. Thermally evaporated Cu2-ZnSnS4 solar cells[J].Applied Physics Letters,2010,97(14):143508.
8 Chan C P, Lam H, Surya C. Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids[J].Solar Energy Materials and Solar Cells,2010,94(2):207.
9 Riha S C, Fredrick S J, Sambur J B, et al.Photoelectrochemical characterization of nanocrystalline thin-film Cu2ZnSnS4 photoca-thodes[J].ACS Applied Materials & Interfaces,2011,3(1):58.
10 Sun K W, Su Z H, Han Z L, et al. Fabrication of flexible Cu2ZnSnS4 (CZTS) solar cells by sulfurizing precursor films deposited via successive ionic layer absorption and reaction method[J].Acta Physica Sinica,2014,63(1):018801(in Chinese).
孙凯文,苏正华,韩自力,等.连续离子层吸附反应沉积后硫化法制备柔性铜锌锡硫薄膜太阳电池[J].物理学报,2014,63(1):018801.
11 Todorov T K, Tang J, Bag S, et al. Beyond 11%efficiency: Characteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells[J].Advanced Energy Mate-rials,2013,3(1):34.
12 Xie M, Zhuang D M, Zhao M, et al. Fabrication of Cu2ZnSnS4 thin films using a ceramic quaternary target[J].Vacuum,2014,101:146.
13 Chawla V, Clemens B. Effect of composition on high efficiency CZTSSe devices fabricated using Co-sputtering of compound targets[C]∥38th IEEE Photovoltaic Specialists Conference.Austin,2012:2990.
14 Kim G Y, Jeong A R, Kim J R,et al. Surface potential on grain boundaries and intragrains of highly efficient Cu2ZnSn(S,Se)4 thin-films grown by two-step sputtering process[J].Solar Energy Mate-rials and Solar Cells,2014,127:129.
15 Sun L, He J, Chen Y, et al. Comparative study on Cu2ZnSnS4 thin films deposited by sputtering and pulsed laser deposition from a single quaternary sulfide target[J].Journal of Crystal Growth,2012,361:147.
16 Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version 43)[J].Progress in Photovoltaics,2014,22(1):1.
17 Fairbrother A, Fontané X, Izquierdo R V, et al. Single-step sulfo-selenization method to synthesize Cu2ZnSn(SySe1-y)4 absorbers from metallic stack precursors[J].ChemPhysChem,2013,14(9):1836.
18 Schurr R, Hlzing A, Jost S, et al. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors[J].Thin Solid Films,2009,517(7):2465.
19 Zhong J, Xia Z, Luo M,et al. Sulfurization induced surface constitution and its correlation to the performance of solution-processed Cu2ZnSn(S,Se)4 solar cells[J].Scientific Reports,2014,4:6288.
20 Yin X S, Tang C H, Sun L F, et al. Study on phase formation me-chanism of non-and near-stoichiometric CZTSSe film prepared by selenization of Cu-Sn-Zn-S precursors[J].Chemistry of Materials,2014,26(6):2005.
21 Li J B, Chawla V, Clemens B M. Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy[J].Advanced Materials,2012,24(6):720.
22 Li J W, Mitzi D B, Shenoy V B. et al. Structure and electronic pro-perties of grain boundaries in earth-abundant photovoltaic absorber Cu2ZnSnSe4[J].ACS Nano,2011,5(11):8613.23 Winkler M T, Wang W, Gunawan O, et al.Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells[J].Energy & Environmental Science,2014,7:1029.
24 Grossberg M, Krustok J, Raudoja J, et al. Photoluminescence and Raman study of Cu2ZnSn(SexS1-x)4 monograins for photovoltaic applications[J].Thin Solid Films,2011,519(21):7403.
25 Redinger A, Hones K, Fontane X, et al. Detection of a ZnSe secon-dary phase in coevaporated Cu2ZnSnSe4 thin films[J].Applied Phy-sics Letters,2011,98(10):101907.
26 Fernandes P A, Salome P M P, Cunha A F, et al. Study of polycrystalline Cu2ZnSnS4 films by Raman scattering[J].Journal of Alloys and Compounds,2011,509(28):7600.
27 Mitzi D B, Gunawan O, Todorov T K, et al. The path towards a high-performance solution-processed kesterite solar cell[J].Solar Energy Materials and Solar Cells,2011,95(6):1421.
[1] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[2] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[3] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[4] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[5] 季雪梅, 郝驰, 朱秀梅, 苏江滨, 何祖明, 唐斌, 朱贤方. 二硫化钼在电子束辐照下的缺陷结构演变及其物理机制研究进展[J]. 材料导报, 2024, 38(3): 22070109-11.
[6] 安博星, 王雅洁, 肖永厚, 楚飞鸿. 液态前驱体化学气相沉积法生长单层二硒化钨[J]. 材料导报, 2024, 38(24): 23120071-6.
[7] 晁昀暄, 戴乐阳, 魏钰坤, 王永坚, 杜金洪. 磺酸钙/油酸改性碳基二硫化钼的制备及在乳化油中的摩擦学性能[J]. 材料导报, 2024, 38(2): 22090049-7.
[8] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[9] 周丹, 刘一鸣, 王志刚, 银建中, 徐琴琴. 液相剥离自组装法制备AgNPs/MoS2复合SERS基底及其性能[J]. 材料导报, 2024, 38(16): 24040049-7.
[10] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[11] 周宇祥, 施天宇, 赵晨媛, 尹海宏, 宋长青, 郁可. 聚苯胺包覆的硫化锌-碳纳米管用作正极载体材料提高锂硫电池性能[J]. 材料导报, 2024, 38(1): 22060085-7.
[12] 孔丽娟, 梁增蕴, 鹿桓, 赵文静. 重力污水管道混凝土的加速腐蚀模拟研究[J]. 材料导报, 2023, 37(7): 21060148-7.
[13] 唐春, 吴梦南, 段超, 余堂杰, 于姗, 周莹. 基于光电催化的硫化氢高值利用研究进展[J]. 材料导报, 2023, 37(3): 22020097-7.
[14] 胡冬冬, 宋述鹏, 刘俊男, 毕江元, 丁兴. CVD法制备单层二硒化钨薄膜及其生长机制研究[J]. 材料导报, 2023, 37(2): 21050222-6.
[15] 李辉, 姚敏, 赖娟, 马长坡, 吴正德, 邱祖民. 端羟基含氟乙烯基聚硅氧烷的合成及应用[J]. 材料导报, 2023, 37(2): 21040285-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed