Please wait a minute...
材料导报  2023, Vol. 37 Issue (10): 22060251-5    https://doi.org/10.11896/cldb.22060251
  无机非金属及其复合材料 |
铝酸钇晶体光学性质和热力学性质的第一性原理研究
孟帅1, 李坤1, 秦振兴1, 张宇飞1, 马柯榕1, 宫长伟2, 杨雯2,*
1 太原科技大学应用科学学院,太原 030024
2 太原科技大学材料科学与工程学院,太原 030024
First-principles Study on Optical and Thermodynamic Properties of YAlO3
MENG Shuai1, LI Kun1, QIN Zhenxing1, ZHANG Yufei1, MA Kerong1, GONG Changwei2, YANG Wen2,*
1 School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 10075KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铝酸钇(YAlO3,YAP)材料的光学和热力学性能优异,在固体激光、发光显示等领域显现出巨大的应用前景。本工作采用基于密度泛函理论的第一性原理研究,计算了YAP晶体的电子结构、光学和热力学性质。结果表明,YAP属于宽禁带绝缘体材料,价带主要是由O的2p电子态贡献,导带基本上是由Y的4d电子态确定,较宽的带隙为众多激活离子的掺杂提供了可能,有利于设计不同材料组成的发光体系;光学性质计算得到了YAP晶体三个不同方向上的介电函数谱、吸收谱、反射谱、折射率谱和能量损失谱,表明YAP材料的光学性质具有各向异性、定向可控的特点;通过对YAP材料声子色散谱的计算,确定了德拜温度随热力学温度的变化规律,在46 K时出现了德拜温度的极小值特征点571 K,处于高温极限时YAP的德拜温度稳定在830 K,证实了自由能、熵、焓、热容等热力学基本参数的温度依赖性。本工作从原子尺度分析了YAP材料的光学性质和热力学性质,为材料的性能研究,特别是YAP材料在低温下的应用提供了基础数据支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟帅
李坤
秦振兴
张宇飞
马柯榕
宫长伟
杨雯
关键词:  第一性原理  电子结构  光学性质  热力学  铝酸钇(YAP)    
Abstract: With excellent optical and thermodynamic properties, YAlO3 (YAP) materials have potential applications in the fields of solid-state lasers and light-emitting displays. In this study, the electronic structure, and the optical and thermodynamic properties of YAP crystals were calculated by first-principles based on density functional theory. The results show that YAP is a wide band gap insulator material, the valence band mainly consists of the 2p electronic state of O atoms, and the conduction band mainly consists of the 4d electronic state of Y atoms. The wide band gap suggests that it is possible for many activated ions to be doped-a property that is conducive to the design of luminescence systems composed of different materials. The dielectric function spectrum, absorption spectrum, reflection spectrum, refractive index spectrum, and energy loss spectrum of YAP were calculated. The calculations revealed that the optical properties of YAP materials are anisotropic and directional controllable. The variation law of Debye temperature with thermodynamic temperature was determined by calculating the phonon dispersion spectrum of YAP. At 46 K, the minimum characteristic point of the Debye temperature was 571 K, stabilizing at 830 K in the high temperature limit. Thus, the temperature dependence of basic thermodynamic parameters, such as free energy, entropy, enthalpy and heat capacity, is confirmed. This study can provide basic data support for material performance research, especially for the application of YAP materials at low temperature, as the optical and thermodynamic properties of YAP materials were analyzed from an atomic viewpoint.
Key words:  first-principle    electronic structure    optical property    thermodynamics    YAlO3(YAP)
出版日期:  2023-05-25      发布日期:  2023-05-23
ZTFLH:  O469  
基金资助: 国家自然科学基金(51871158);山西省基础研究计划资助项目(202103021224268);太原科技大学科研启动基金资助(20222006)
通讯作者:  *杨雯,太原科技大学材料科学与工程学院教授、博士研究生导师。2004年曲阜师范大学物理系物理学专业本科毕业,2009年中国科学院固体物理研究所凝聚态物理专业博士毕业。目前主要从事计算材料学方向的理论研究及金属表面改性方向的实验研究。发表学术论文50余篇,包括Soft Matter、Physical Chemistry Chemical Physics、Physical Reviews E等。yangwen@tyust.edu.cn   
作者简介:  孟帅,太原科技大学应用科学学院讲师。2016年6月哈尔滨理工大学光信息科学与技术专业本科毕业,2021年6月于中国科学院理化技术研究所光学专业博士毕业后到太原科技大学工作至今。目前主要研究领域为激光技术、激光材料第一性原理计算等。发表论文5篇,包括Photonics Technology Letters、Optics Letters、Laser Physics等。
引用本文:    
孟帅, 李坤, 秦振兴, 张宇飞, 马柯榕, 宫长伟, 杨雯. 铝酸钇晶体光学性质和热力学性质的第一性原理研究[J]. 材料导报, 2023, 37(10): 22060251-5.
MENG Shuai, LI Kun, QIN Zhenxing, ZHANG Yufei, MA Kerong, GONG Changwei, YANG Wen. First-principles Study on Optical and Thermodynamic Properties of YAlO3. Materials Reports, 2023, 37(10): 22060251-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060251  或          http://www.mater-rep.com/CN/Y2023/V37/I10/22060251
1 Piskunov S, Isakovia I, Putnina M, et al. Low Temperature Physics, 2020, 46(12), 1365.
2 Bercha D M, Rushchanskii K Z, Sznajder M, et al. Physical Review B, 2002, 66(19), 195203.
3 Vuuren A, Saifulin M M, Skuratov V A, et al. Nuclear Instruments & Methods in Physics Research, 2019, 460, 67.
4 Zhydachevskyy Y, Hizhnyi Y, Nedilko S G, et al. Journal of Physical Chemistry C, 2021, 125(48), 26698.
5 Tomiki T, Fukudome F, Kaminao M, et al. Journal of Luminescence, 1988, 40, 379.
6 Singh D J. Physical Review B, 2007, 76(21), 214115.
7 Chen J Y, Zhao G J, Cao D H, et al. Computational Materials Science, 2009, 46, 225.
8 Huang Z, Jing F, Pan W. Computational Materials Science, 2011, 50(10), 3056.
9 Kapusta M, Pawelke J, Moszyński M. Nuclear Instruments and Methods in Physics Research Section A, 1998, 404(2), 413.
10 Loutts G B, Warren M, Taylor L, et al. Conference on Lasers and Electro-Optics, 1997, 11, 492.
11 Shen H Y, Lian T G, Zheng R R, et al. IEEE Journal of Quantum Electronics, 1989, 25(2), 144.
12 Yao B Q, Zheng L L, Zhou R L, et al. Laser Physics, 2008, 18(12), 1501.
13 Song Y J, Xu Y Z, Meng S, et al. Optics Letters, 2021, 46(10), 2425.
14 Diehl R, Brandt G. Materials Research Bulletin, 1975, 10(2), 85.
15 Segall M D, Lindan P J, Probert M J, et al. Journal of Physics Condensed Matter, 2002, 14(11), 2717.
16 Clark S J, Segall M D, Pickard C J, et al. Zeitschrift Fuer Kristallographie, 2005, 220 (5-6), 567.
17 Kohn W, Sham L J. Physical Review, 1965, 140(4), A1133.
18 Vanderbilt D. Physical Review B, 1990, 41(11), 7892.
19 Perdew J P, Yue W. Physical Review B, 2018, 98(7), 079904.
20 Muñoz-García A B, Anglada E, Seijo L. International Journal of Quantum Chemistry, 2009, 109, 1991.
21 Xu X G, Ding X, Chen Q, et al. Physical Review B, 2006, 73(16), 165403.
22 Shen H Y, Zeng Z D, Lin W X, et al. Acta Optica Sinica, 1991, 11(9), 825 (in Chinese).
沈鸿元, 曾政东, 林文雄, 等. 光学学报, 1991, 11(9), 825.
23 Blanco M A, Francisco E, Luana V. Computer Physics Communications, 2004, 158(1), 57.
24 Bolgar A S, Kriklya A I, Kartuzova L N. Powder Metallurgy and Metal Ceramics, 1987, 26(2), 176.
25 Baroni S, Gironcoli S D, Corso A D, et al. Reviews of Modern Physics, 2001, 73, 515.
[1] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[2] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[3] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[4] 才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
[5] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[6] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[7] 徐良玉, 黄福祥, 龙敏, 邓鸿元, 陈剑. 过渡金属元素(X=Cr, Mn, Co, Ni, Zn, Zr, Nb, Ta)掺杂立方BaTiO3的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 21090275-5.
[8] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[9] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[10] 高梦锞, 魏世忠, 吴巧合, 袁智康, 熊美. (Fe,Cr)7C3/MoC界面电子特性的第一性原理研究[J]. 材料导报, 2022, 36(9): 21020149-6.
[11] 郑棋文, 范同祥. 液/固晶面润湿性实验与模拟研究方法[J]. 材料导报, 2022, 36(9): 21010025-12.
[12] 肖美霞, 冷浩, 姚婷珍, 王磊, 何成. 电场调控范德华异质薄膜能隙的第一性原理研究:单层SiC沉积在表面氢化的BN薄膜上[J]. 材料导报, 2022, 36(8): 20080062-6.
[13] 曾奕瑾, 宗朔通. 第一性原理在钙钛矿中的应用研究进展[J]. 材料导报, 2022, 36(8): 20080229-6.
[14] 张文博, 石建丽, 马建中, 卫林峰, 范倩倩. 荧光碳量子点及其在防伪中的应用[J]. 材料导报, 2022, 36(7): 20110186-11.
[15] 侯腾跃, 孙炎辉, 孙舒鹏, 肖瑛, 郑雁公, 王兢, 杜海英, 吴隽新. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 20080205-12.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed