Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23090088-9    https://doi.org/10.11896/cldb.23090088
  高分子与聚合物基复合材料 |
基于几何优化的复合材料胶接接头强度改进的研究进展
徐喻琼1,2,*, 钟紫珊1,2, 郑黔松1,2
1 湖北工业大学机械工程学院,武汉 430068
2 现代制造质量工程湖北省重点实验室,武汉 430068
Research Progress on Improving the Strength of Composite Adhesive Joint Based on Geometric Optimization
XU Yuqiong1,2,*, ZHONG Zishan1,2, ZHENG Qiansong1,2
1 School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
2 Hubei Key Laboratory of Modern Manufacturing Quality Engineering, Wuhan 430068, China
下载:  全 文 ( PDF ) ( 2584KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着轻量化结构需求的不断增长,复合材料在航空、船舶、汽车、建筑、体育器材等领域中的应用越来越广泛。复合材料的连接方式主要有机械连接和胶接连接两种,而胶接连接作为一种高效、可靠的连接方式,在复合材料的连接中尤为重要,是不可或缺的一部分。胶接接头在高承载结构中的广泛应用,增长了对其强度更高、寿命更长、成本更低的需求。本综述通过回顾提高复合材料胶接接头强度的研究进展,讨论并比较现有复合材料胶接结构的几何优化方法,综合分析各几何因素对胶接接头强度的影响,分类列举了不同胶接接头的整体和局部结构设计优化技术,分析了各优化技术改变接头受力方式和应力分布,降低胶接结构中的应力集中程度,进而提高胶接接头的强度的作用和机制。最后,对这些几何方法的突出特点以及局限性进行总结,以提高胶接接头连接效率,拓展胶接接头应用领域,推动复合材料连接技术的发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐喻琼
钟紫珊
郑黔松
关键词:  复合材料  胶接接头  结构几何优化  胶接强度    
Abstract: With the growing demand for lightweight structures, composite materials are increasingly used in aviation, shipbuilding, automobiles, constructions, sports equipment and other fields. The connection methods of composite materials mainly include mechanical bonding and adhesive bonding. As an efficient and reliable connection method, adhesive bonding is particularly important in the connection of composite mate-rials and is an indispensable part. Due to the widespread use of adhesive joints in highly load-bearing structures, there is a growing demand for higher strength, longer life, and lower cost of these joints. By reviewing the latest research progress in improving the strength of composite adhesive joints, this summary discussed and compared the geometric optimization methods of existing composite adhesive structures, comprehensively analyzed the influence of various geometric factors on the strength of adhesive joints, including optimizing the overall and local structural design of adhesive joints, adjusting the stress mode and distribution of joints, reducing stress concentration in adhesive structures, and thereby improving the strength of adhesive joints. Finally, summarizing the prominent characteristics and limitations of these geometric methods to improve the efficiency of adhesive joint. This paper is helpful to expand the application of adhesive joints, and promote the development of composite material connection technology.
Key words:  composite material    bonded joint    structural geometry optimization    bonding strength
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TB333  
基金资助: 国家自然科学基金(11204158);现代制造质量工程湖北省重点实验室2022年度实验室开放基金(KFJJ-2022008);湖北工业大学博士科研启动基金(XJ2021006201)
通讯作者:  * 徐喻琼,湖北工业大学机械工程学院副教授、研究生导师。1995年毕业于葛洲坝水电工程学院,获工学学士学位;先后进入葛洲坝集团科学技术处、葛洲坝集团科技发展中心工作,2003年进入三峡大学攻读硕士,2006年硕士毕业,同年进入华南理工大学攻读博士,2009年获得工学博士学位,先后在三峡大学、湖北工业大学从事教学和科研工作。近几年的研究工作主要包括聚合物基复合材料性能及其优化研究,在国内外刊物上发表论文10余篇。 kexyq@qq.com   
引用本文:    
徐喻琼, 钟紫珊, 郑黔松. 基于几何优化的复合材料胶接接头强度改进的研究进展[J]. 材料导报, 2024, 38(24): 23090088-9.
XU Yuqiong, ZHONG Zishan, ZHENG Qiansong. Research Progress on Improving the Strength of Composite Adhesive Joint Based on Geometric Optimization. Materials Reports, 2024, 38(24): 23090088-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090088  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23090088
1 Zou T C, Fu J, Ju L Z, et al. Materials Reports, 2023, 37(11), 163 (in Chinese).
邹田春, 符记, 巨乐章, 等. 材料导报, 2023, 37(11), 163.
2 Shang X L. Investigation and optimization of the load capacity of adhesive single-lap joints with composite adherends. Ph. D. Thesis, National University of Defense Technology, China, 2021 (in Chinese).
尚新龙. 复合材料单搭接胶接连接的承载性能分析与优化设计. 博士学位论文, 国防科技大学, 2021.
3 Han Z J, Zhou J Y, Zhang B L, et al. Machinery Design & Manufacture 2023, 385(3), 63 (in Chinese).
韩子健, 周金宇, 庄百亮, 等. 机械设计与制造, 2023, 385(3), 63.
4 Budhe S, Banea M D, De Barros S, et al. International Journal of Adhesion and Adhesives, 2017, 72, 30.
5 Navarro R B. Plasma pre-treatment for adhesive bonding of aerospace composite components. Master’s Thesis, Brunel University London, 2016.
6 Banea M D, Da Silva L F M. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2009, 223(1), 1.
7 Song C Y, Jing J Y, Zhao M, et al. Chemistry and Adhesion, 2023, 45(2), 119(in Chinese).
宋彩雨, 景君怡, 赵明, 等. 化学与粘合, 2023, 45(2), 119.
8 Schweizer M, Meinhard D, Ruck S, et al. Journal of Adhesion Science and Technology, 2017, 31(23), 2581.
9 Ozel A, Yazici B, Akpinar S, et al. Composites Part B: Engineering, 2014, 62, 167.
10 Neto J, Campilho R D S G, Da Silva L F M. International Journal of Adhesion and Adhesives, 2012, 37, 96.
11 Yang B N, Zheng Y P, Li C, et al. Fiber Reinforced Plastics/Compo-sites, 2019(2), 26 (in Chinese).
杨本宁, 郑艳萍, 李成, 等. 玻璃钢/复合材料, 2019(2), 26.
12 Liang Z D, Yan Y, Zhang T T, et al. Journal of Beihang University of Aeronautics and Astronautics, 2014, 40(12), 1786(in Chinese).
梁祖典, 燕瑛, 张涛涛, 等. 北京航空航天大学学报, 2014, 40(12), 1786.
13 Chen Q, Du B, Zhang X, et al. Materials, 2022, 15(22), 8013.
14 Wang D W, Qin J X, Li L H, et al. Plastics, 2020, 49(3), 90 (in Chinese).
王大伟, 秦嘉徐, 李龙辉, 等. 塑料, 2020, 49(3), 90.
15 Zou T C, Ju L Z, Guan Y X, et al. Acta Aeronautica et Astronautica Sinica, 2023, 44(18), 292 (in Chinese).
邹田春, 巨乐章, 管玉玺, 等. 航空学报, 2023, 44(18), 292.
16 Xiao X, Yue T, Zhang T S. Composites Science and Engineering, 2023(12), 28 (in Chinese).
肖潇, 岳涛, 张铁山. 复合材料科学与工程, 2023(12), 28.
17 Xiong D J. A study on adhesive strength of single lap structural adhesive join of glass fiber reinforced composites. Master’s Thesis, Changsha University, China, 2018 (in Chinese).
熊东箭. 玻纤增强复合材料单搭接胶接接头强度研究. 硕士学位论文, 长沙大学, 2018.
18 Feng C, Zhao G H. China Plastics, 2021, 35(11), 144 (in Chinese)
冯闯, 赵广慧. 中国塑料, 2021, 35(11), 144.
19 Lou S M, Ren G D, Yang Z S, et al. Composites Science and Engineering, 2022(11), 35 (in Chinese).
娄淑梅, 任国栋, 杨振三, 等. 复合材料科学与工程, 2022(11), 35.
20 Kim K S, Yi Y M, Cho G R, et al. Composite Structures, 2008, 82(4), 513.
21 Liu J M, Quan D, Zhao G Q. Journal of Mechanical Engineering, 2023, 59(20), 119 (in Chinese).
刘嘉鸣, 全东, 赵国群. 机械工程学报, 2023, 59(20), 119.
22 Ye F. Researches about the bonding performance of Carbon fiber laminated plates. Master’s Thesis, North University of China, China, 2015 (in Chinese).
叶斐. 碳纤维层合板胶接性能研究. 硕士学位论文, 中北大学, 2015.
23 Guo S. Study of the mechanical performance and analysis of the failure behavior for adhesivly bonded joints between CFRP and steel DC04. Master’s Thesis, Hunan University, China, 2017 (in Chinese).
郭帅. CFRP与DC04钢胶接接头力学性能研究与失效行为分析. 硕士学位论文, 湖南大学, 2017.
24 Shang X, Marques E A S, Machado J J M, et al. Composites Part B: Engineering, 2019, 177, 107363.
25 Wang S X, Shang X L, Ju S, et al. Fiber Reinforced Plastics/Composites, 2017, 286(11), 95 (in Chinese).
王树鑫, 尚新龙, 鞠苏, 等. 玻璃钢/复合材料, 2017, 286(11), 95.
26 Mao Z G, Hou Y L, Li C, et al. Acta Materiae Compositae Sinica, 2020, 37(1), 121(in Chinese).
毛振刚, 侯玉亮, 李成, 等. 复合材料学报, 2020, 37(1), 121.
27 Zhao M M, Hu Y F, Zhang J G, et al. Digital Manufacture Science, 2020, 18(1), 91 (in Chinese).
赵明明, 胡业发, 张锦光, 等. 数字制造科学, 2020, 18(1), 91.
28 Hu C X, Hou Y L, Tie Y, et al. Journal of Mechanical Engineering, 2021, 57(8), 154(in Chinese).
胡春幸, 侯玉亮, 铁瑛, 等. 机械工程学报, 2021, 57(8), 154.
29 Razavi S M J, Berto F, Peron M, et al. Theoretical and Applied Fracture Mechanics, 2018, 93, 44.
30 Fessel G, Broughton J, Fellows N, et al. In:48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Waikiki, 2007, pp.2192.
31 You M, Yu S, Yu H Z, et al. Key Engineering Materials, 2007, 348, 273.
32 Bodepudi R, Hughes D J, Pradhan A K. International Journal of Adhesion and Adhesives, 2017, 77, 78.
33 Nosouhi F, Farahani M, Ansari M. Journal of Adhesion Science and Technology, 2018, 32(9), 1007.
34 Luo W, Ma J, Chen Z L et al. China Adhesives, 2019, 28(8), 34(in Chinese).
罗威, 马娇, 陈正龙, 等. 中国胶粘剂, 2019, 28(8), 34.
35 Kishore A N, Prasad N S. International Journal of Adhesion and Adhesives, 2012, 35, 55.
36 Ashrafi M, Ajdari A, Rahbar N, et al. International Journal of Adhesion and Adhesives, 2012, 32, 46.
37 Khalid A A. Key Engineering Materials, 2020, 858, 20.
38 Campilho R D S G, De Moura M F S F, Domingues J J M S. Journal of Adhesion Science and Technology, 2007, 21(9), 855.
39 Yoo J S, Truong V H, Park M Y, et al. Composite Structures, 2016, 140, 417.
40 Li J, Yan Y, Liang Z, et al. The Journal of Adhesion, 2016, 92(1), 1.
41 Sonat E, Özerinç S. Composite Structures, 2021, 258, 113205.
42 Da Silva L F M, Öchsner A, Adams R D. Handbook of adhesion technology, Springer Science & Business Media, Germany, 2011, pp.787.
43 Se Souze G, Anjoletto D P T, Ferreira T R M, et al. Macromolecular Symposia, 2019, 383(1), 1800007.
44 Das S, Gillespie J J W, Shenton III H, et al. In: Society for the advancement of material and process engineering conference, North America, 2023.
45 Kim J H, Park B J, Han Y W. Composite Structures, 2004, 66(1-4), 69.
46 Brito R F N, Campilho R, Moreira R D F, et al. Procedia Structural Integrity, 2021, 33, 665.
47 Wu C, Chen C, He L, et al. Composites Part B: Engineering, 2018, 155, 19.
48 Ejaz H, Hkan H Y, Mazhar F A, et al. Forces in Mechanics, 2022, 9, 100144.
49 Li B, Zhao M Y, Wan X P. Advances in Aeronautical Science and Engineering, 2013, 4(2), 170 (in Chinese).
李波, 赵美英, 万小朋. 航空工程进展, 2013, 4(2), 170.
50 Yousefi K A, Green S, Hou X, et al. Journal of Adhesion Science and Technology, 2021, 35(17), 1821.
51 Da Silva L F M, Öchsner A. Modeling of adhesively bonded joints, Berlin: Springer, Germany, 2008, pp.132.
52 Moya-Sanz E M, Ivañez I, Garcia-Castillo S K. International Journal of Adhesion and Adhesives, 2017, 72, 23.
53 Haghani R, Al-Emrani M, Kliger R. Journal of Composite Materials, 2010, 44(3), 287.
54 Deng J, Lee M M. Composites Part B: Engineering, 2008, 39(4), 731.
55 Amaro A M, Neto M A, Loureiro A, et al. Theoretical and Applied Fracture Mechanics, 2018, 96, 231.
56 Hildebrand M. International Journal of Adhesion and Adhesives, 1994, 14(4), 261.
57 Li S, Liu W, Sun W, et al. Engineering Fracture Mechanics, 2023, 281, 109141.
58 Beigrezaee M J, Ayatollahi M R, Bahrami B, et al. The Journal of Adhesion, 2020, 97(11), 1004.
59 Matveenko V P, Sevodina N V, Fedorov A Y. Journal of Applied Mechanics and Technical Physics, 2013, 54(5), 841.
60 Tsai M, Morton J. Composite Structures, 1995, 32(1-4), 123.
61 Noureddine D, Benali B, Rachid H B, et al. Engineering Structures, 2022, 256, 114049.
62 Xu Y Q. Adhesion, 2016, 37(6), 67 (in Chinese).
徐喻琼. 粘接, 2016, 37(6), 67.
63 Lang T P, Mallick P. International Journal of Adhesion and Adhesives, 1998, 18(3), 167.
64 Kim K S, Yoo J S, Yi Y M, et al. Composite Structures, 2006, 72(4), 477.
65 Du Z X, Gao Z Z, Yue Z F. Journal of Mechanical Strength, 2008, 30(5), 839(in Chinese).
杜正兴, 高宗战, 岳珠峰. 机械强度, 2008, 30(5), 839.
66 Zheng G, Liu C, Han X, et al. International Journal of Adhesion and Adhesives, 2020, 99, 102590.
67 Kaiser I, Tan K T. International Journal of Adhesion and Adhesives, 2020, 103, 102710.
68 Zheng X L, Na R S, You M, et al. Journal of China Three Gorges University (Natural Science) , 2001, 23(6), 530 (in Chinese).
郑小玲, 娜日松, 游敏, 等. 三峡大学学报(自然科学版), 2001, 23(6), 530.
69 Belingardi G, Goglio L, Tarditi A. International Journal of Adhesion and Adhesives, 2002, 22(4), 273.
70 Desai C R, Patel D C, Desai C K. Materials Today: Proceedings, DOI: 10. 1016/j. matpr. 2023. 04. 026.
71 Zhao X, Adams R, Da Silva L F M. Journal of Adhesion Science and Technology, 2011, 25(8), 819.
72 Zhao X, Adams R, Da Silva L F M. Journal of Adhesion Science and Technology, 2011, 25(8), 837.
[1] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[6] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[7] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[8] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[9] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[10] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[11] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[12] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[13] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[14] 贾宝惠, 任鹏, 宋挺, 崔开心, 肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响[J]. 材料导报, 2024, 38(5): 22100282-7.
[15] 张倩玮, 陈意高, 崔红, 吴小军. SiC-ZrC复相超高温陶瓷改性C/C复合材料的研究进展[J]. 材料导报, 2024, 38(3): 22060154-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed