Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 101-104    https://doi.org/10.11896/j.issn.1005-023X.2017.02.022
  材料研究 |
CSW/POE-g-MA/PA6三元复合材料的结构和性能
孙文奎1, 周松1, 马俊辉2, 闫珂华1, 王君1, 陈浩1
1 西南石油大学材料科学与工程学院, 成都 610500;
2 成都产品质量检验研究院有限责任公司, 成都 610015;
Structure and Properties of CSW/POE-g-MA/PA6 Ternary Composites
SUN Wenkui1, ZHOU Song1, MA Junhui2, YAN Kehua1, WANG Jun1, CHEN Hao1
1 School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500;
2 Chengdu Institute of Product Quality Inspection Co.,Ltd, Chengdu 610015;
下载:  全 文 ( PDF ) ( 1319KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用马来酸酐接枝乙烯-辛烯共聚物(POE-g-MA)对CaSO4晶须/尼龙6(CSW/PA6)共混物增韧改性,研究了CSW/PA6和CSW/POE-g-MA/PA6复合材料的力学性能、热性能、形貌和加工性能。适量添加CSW可同时提高PA6的刚性和韧性。与纯PA6性能比较,10%CSW/PA6的拉伸强度、弯曲强度、弯曲模量和冲击强度分别增大7.5%、9.1%、21.1%和11.6 %;当CSW含量增至30%,CSW/PA6的韧性明显降低。POE-g-MA可促进PA6基体中CSW的均匀分散,增强CSW与PA6的界面粘附,提高CSW/PA6(30/70)的冲击韧性。源于CSW和POE-g-MA的协同作用,CSW/POE-g-MA/PA6(30/5/65)的冲击强度和弯曲模量与纯PA6相比较,分别提高了36.8%和22.1%,拉伸和弯曲强度接近纯PA6。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙文奎
周松
马俊辉
闫珂华
王君
陈浩
关键词:  CaSO4晶须  尼龙6  马来酸酐接枝乙烯-辛烯共聚物  性能    
Abstract: Maleic anhydride grafted polyethylene-octene copolymer (POE-g-MA) was used to toughen calcium sulfate whis-ker/nylon 6 (CSW/PA6) composites, and mechanical, thermal, morphological properties and processing performance of CSW/PA6 and CSW/POE-g-MA/PA6 composites were studied. The results indicated that the addition of appropriate CSW could increase both the stiffness and toughness of PA6. Compared with those of pure PA6, tensile strength, flexural strength, flexural modulus and notched impact strength of 10%CSW/PA6 composites increased by 7.5%,9.1%,21.1% and 11.6%, respectively. However, when CSW content increased to 30%, the impact strength of PA6 decreased significantly. The presence of POE-g-MA promoted the homogeneous distribution of CSW in PA6 matrix, also enhanced the interfacial adhesion between CSW and PA6, resulting in significant improvement of impact strength of CSW/PA6 (30/70) composites. Due to the synergistic effect of CSW and POE-g-MA, the notched impact strength and flexural modulus of CSW/POE-g-MA/PA6 (30/5/65) composites increased by 36.8% and 22.1% compared with pure PA6, and its tensile and flexural strength were close to those of pure PA6.
Key words:  calcium sulfate whisker    nylon 6    maleic anhydride grafted polyethylene-octene copolymer    properties
               出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TQ342+.11  
作者简介:  孙文奎:男,1987年生,硕士研究生,主要研究方向为尼龙及聚烯烃复合材料的结构和性能 E-mail:1025757689@qq.com 周松:通讯作者,男,1967年生,博士,副研究员,主要研究方向为聚合物结构与性能 E-mail:song_zhou889@163.com
引用本文:    
孙文奎, 周松, 马俊辉, 闫珂华, 王君, 陈浩. CSW/POE-g-MA/PA6三元复合材料的结构和性能[J]. 《材料导报》期刊社, 2017, 31(2): 101-104.
SUN Wenkui, ZHOU Song, MA Junhui, YAN Kehua, WANG Jun, CHEN Hao. Structure and Properties of CSW/POE-g-MA/PA6 Ternary Composites. Materials Reports, 2017, 31(2): 101-104.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.022  或          http://www.mater-rep.com/CN/Y2017/V31/I2/101
1 Courtney T H. Mechanical behavior of materials [M].New York: McGraw-Hill Science,1999:83.
2 Yang M, Luo S K, Deng Z P,et al.Applications of whiskers in poly-mer composites [J].Mater Rev:Rev,2014,28(2):51(in Chinese).
杨萌,罗世凯,邓昭平,等.晶须在聚合物复合材料中的应用[J].材料导报:综述篇,2014,28(2):5.
3 Tjong S C, Meng Y Z. Performance of potassium titanate whisker reinforced polyamide-6 composites [J]. Polymer,1998,39(22):5461.
4 Liu J Y, Reni L, Wu J L, et al. Fabrication and characterization of polycaprolactone/calcium sulfate whisker composites [J]. Express Polym Lett,2011,5(8):742.
5 He M, Wang L E, Lu S J, et al. Properties of calcium sulfate whisker-modified low melting point nylon6 composite [J]. Plastics,2010,39(4):24(in Chinese).
何敏,王丽娥,鲁圣军,等.硫酸钙晶须改性低熔点PA6复合材料的性能[J].塑料,2010,39(4):24.
6 Shao H J, Qin S H, Yu J, et al. Influence of grafting degree on the morphology and mechanical properties of PA6/POE-g-GMA blends [J].Polym-Plast Technol Eng,2012,51(1):28.
7 Wang K, Wang C, Li J, et al. Effects of clay on phase morphology and mechanical properties in polyamide 6/EPDM-g-MA/organoclay ternary nanocomposites [J].Polymer,2007,48(7):2144.
8 Lim S H, Dasari A, Yu Z Z, et al. Fracture toughness of nylon 6/organoclay/elastomer nanocomposites [J]. Compos Sci Technol,2007,67(14):2914.
9 Ning N Y, Deng H, Luo F, et al. Effect of whiskers nucleation abi-lity and shearing function on the interfacial crystal morphology of polyethylene (PE)/raw whiskers composites [J]. Composites Part B,2011,42(4):631.
10 Feng X, Wang H Y, Shi Y J, et al. The effects of the size and content of potassium titanate whiskers on the properties of PTW/PTFE composites [J].Mater Sci Eng A,2007,448(1-2):253.
11 Qiu L, Tsai F C, Zhou Q, et al. Influence of CaCl2 on the structure and mechanical properties of PA6/CaSO4 whisker composites [J]. Colloid Polym,2010,28(2):81(in Chinese).
邱亮,蔡芳昌,周勤,等.氯化钙对尼龙6/硫酸钙晶须增强材料结构与力学性能的影响研究[J].胶体与聚合物,2010,28(2):81.
12 Tjong S C, Meng Y Z. Properties and morphology of polyamide 6 hybrid composites containing potassium titanate whisker and liquid crystalline copolyester [J].Polymer,1999,40(5):1109.
13 Dweiri R, Azhari C H. Thermal and flow property-morphology relationship of sugarcane bagasse fiber-filled polyamide 6 blends [J].J Appl Polym Sci,2004,92(6):3744.
14 Cao M L, Zhang C, Wei J Q. Microscopic reinforcement for cement based composite materials [J]. Constr Build Mater,2013,40:14.
15 Abdulkadir Güllü, Ahmet zdemir, Emin zdemir. Experimental investigation of the effect of glass fibres on the mechanical properties of polypropylene (PP) and polyamide 6 (PA6) plastics [J].Mater Des,2006,27(4):316.
16 Chow W S, Mohd Ishak Z A, Apostolov A A, et al. Compatibilizing effect of maleated polypropylene on the mechanical properties and morphology of injection molded polyamide 6/polypropylene/organoclay nanocomposites [J]. Polymer,2003,44(23):7427.
17 王贵恒.高分子材料成型加工原理[M].北京:化学工业出版社,2011:6.
18 Shiao M L, Nair S V, Garrett P D, et al. Effect of glass-fiber reinforcement and annealing on microstructure and mechanical behaviour of nylon 6,6:Part Ⅱ Mechanical behaviour [J]. Mater Sci,1994,29(7):1739.
19 Zhang X J, Zhang X Y, et al. Mechanical and thermal properties of denture PMMA reinforced with silanized aluminum borate whiskers [J]. Dental Mater J,2012,31(6):903.
20 顾宜,赵长生.材料科学与工程基础[M].北京:化学工业出版社,2011:3.
21 Sachin N Sathe, Rao K V, Surekha Devi, et al. The effect of composition on morphological, thermal, and mechanical properties of polypropylene/nylon-6/polypropylene-g-butyl acrylate blends [J]. Polym Eng Sci,1996,36(19):2443.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[3] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[4] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[5] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[6] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[7] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[8] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[9] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[10] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[11] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[12] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[13] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[14] 李今朝, 陈亮, 黄腾飞, 匡艳军, 邱振生. 关于反应堆压力容器新型用钢SA-508Gr.4N的研究进展[J]. 材料导报, 2019, 33(z1): 382-385.
[15] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed