Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 105-111    https://doi.org/10.11896/j.issn.1005-023X.2017.02.023
  材料研究 |
Nb、Ti微合金钢中碳氮化物固溶与再析出的研究
李晓林, 肖宝亮, 崔阳, 李飞, 张大伟, 缪成亮, 张旭, 朱腾威
首钢技术研究院, 北京 100043;
Solid Solution and Re-precipitation of Carbonitride in Nb,Ti-microalloyed Steel
LI Xiaolin, XIAO Baoliang, CUI Yang, LI Fei, ZHANG Dawei, MIAO Chengliang, ZHANG Xu, ZHU Tengwei
Shougang Research Institute of Technology, Beijing 100043;
下载:  全 文 ( PDF ) ( 1878KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用光学显微镜(OM)、透射电子显微镜(TEM)研究了再加热温度、奥氏体区变形温度和组织转变温度的变化对Nb、Ti微合金钢组织性能及其碳氮化物固溶与再析出行为的影响。结果表明:钢中加入铌,主要利用铌的碳氮化物在奥氏体形变过程中的再析出,抑制形变奥氏体的再结晶,在随后的组织演变过程中细化了组织;而钢中加入较高含量的钛,主要利用钛的碳化物在铁素体中的析出,产生明显的沉淀强化作用。这主要是铌、钛的碳氮化物固溶后,在奥氏体和铁素体中再析出的不同所造成的。钢中复合加入Nb-Ti后既起到细化晶粒的作用,又起到析出强化的作用。细晶强化既提高钢的强度又提高钢的韧性,但沉淀强化在大幅提高钢的强度的同时恶化了钢的韧性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晓林
肖宝亮
崔阳
李飞
张大伟
缪成亮
张旭
朱腾威
关键词:  微合金钢  碳氮化物  细晶强化  沉淀强化  组织演变    
Abstract: The effect of reheating temperature, austenite deformation temperature and transformation temperature on mechanical property, solid solution and re-precipitation of Nb,Ti carbonitrides in Nb/Ti microalloyed steels were investigated by optical microscope (OM) and transmission electron microscope (TEM). Results showed that there had been a noticeable refinement in the microstructure in Nb microalloyed steel,as carbonitrides of niobium re-pricipitated during austenite deformation,inhibited austenite recrystalization, and acted as a grain refiner during subsequent microstructure revolution. The addition of Ti enhanced the strength of steel obviously, but had little effect on the microstructure refinement. Obvious grain refinement strengthening and precipitation strengthening can be confirmed in Nb-Ti microalloyed steel,both of which brought benefit to steel′s strength. Grain refinement strengthening improved the toughness of experimental steel, while on the contrary precipitation strengthening deteriorated the toughness.
Key words:  microalloyed steel    carbonitride    grain refinement strengthening    precipitation strengthening    microstructure evolution
               出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TG142.1  
作者简介:  李晓林:男,1985年生,博士,工程师,研究方向为热轧高强钢品种开发 E-mail:lixiaolinwork@163.com
引用本文:    
李晓林, 肖宝亮, 崔阳, 李飞, 张大伟, 缪成亮, 张旭, 朱腾威. Nb、Ti微合金钢中碳氮化物固溶与再析出的研究[J]. 《材料导报》期刊社, 2017, 31(2): 105-111.
LI Xiaolin, XIAO Baoliang, CUI Yang, LI Fei, ZHANG Dawei, MIAO Chengliang, ZHANG Xu, ZHU Tengwei. Solid Solution and Re-precipitation of Carbonitride in Nb,Ti-microalloyed Steel. Materials Reports, 2017, 31(2): 105-111.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.023  或          http://www.mater-rep.com/CN/Y2017/V31/I2/105
1 Manohar P A, Chandra T. Continuous cooling transformation behavior of microalloyed steels containing titanium, niobium, manganese and molybdenum[J].ISIJ Int,1996,36(12):1486.
2 Zhao Y T, Shang C J, Yang S W, et al. The metastable austenite transformation in Mo-Nb-Cu-B low carbon steel [J]. Mater Sci Eng A,2006,433:169.
3 Zhao Y T, Yang S W, Shang C J, et al. The mechanical properties and corrosion behaviors of ultra-low carbon microalloying steel [J]. Mater Sci Eng A,2007,454-455:695.
4 Speer J G, Michael J R, Hansen S S. Carbonitride precipitation in niobium/vanadium microallyed steels [J]. Metall Trans A,1987,18(2):211.
5 Smith R M, Dunne D P. Structureal aspects of alloy carbonitride precipitation in microalloyed steels[J]. Mater Forum,1988,11:166.
6 Yan F Y, Zhang X G. Application of Ti to automobile wheel steel and discussion on alloying technology[J]. Iron Steel,2001,36(5):47(in Chinese).
阎凤义,张晓光.钛在汽车轮钢中的作用及合金化工艺探讨[J].钢铁,2001,36(5):47.
7 Rainforth W M, et al. Precipitation of NbC in a model austenitic steel[J]. Acta Mater,2002,50(2):735.
8 Saikaly W, Bano X, Issartel C, et al. The effects of thermomechanical processing on the precipitation in a industrial dualphase steel microalloyed with titanium[J]. Metall Mater Trans A,2001,32(8):1939.
9 Misra R D K, Nathani H, Hartmann J E, et al. Microstructural evolution in a new 770 MPa hot rolled Nb-Ti microalloyed steel[J]. Mater Sci Eng A,2005,394:339.
10 Soto R, Saikaly W, Bano X, et al.Statistical and theoretical analysis of precipitates in dual-phase steels microalloyed with titanium and their effect on mechanical properties[J]. Acta Mater,1999,47(12):3475.
11 Liu W J, Jonas J J. A stress relaxation method for following carbonitride precipitation in austenite at hot working temperatures[J]. Me-tall Trans A,1983,19A(6):1403.
12 Pandita A, Murugaiyana A, Poddera A S, et al. Strain induced precipition of complex carbonitrides in Nb-V and Ti-V microalloyed steels[J]. Scr Mater,2005,53(1):1309.
13 Li W J, Kang X B. Effect of dissolution and precipitation of Nb-Ti carbides on structure and properties of low carbon microalloying steel[J]. Special Steel,2006,27(6):4(in Chinese).
李维娟,康小兵. Nb、Ti碳化物的溶解与析出对低C微合金钢组织和性能的影响[J]. 特殊钢,2006,27(6):4.
14 Zhao Y T, Shang C J, He X L, et al. Intermediate transformation structures in a carbon Mo-Cu-Nb-B microalloying steel[J]. Acta Metall Sin,2006,42(1):56(in Chinese).
赵运堂,尚成嘉,贺信莱,等.低碳Mo-Cu-Nb-B系微合金钢的中温转变组织类型[J].金属学报,2006,42(1):56.
15 Strid J, Easterling K E. On the chemistry and stability of complex carbide and nitrides in microalloyed steels[J]. Acta Metall,1985,33(11):2057.
16 Fu J, Zhu J, Di L, et al. Study on the precipitation behavior of TiN in the microalloyed steels[J]. Acta Metall Sin,2000,38(8):801(in Chinese).
傅杰,朱剑,迪林,等.微合金钢中TiN的析出规律研究[J]. 金属学报,2000,38(8):801.
17 Cota A B, Lacerda C A, et al. Effect of the austenitizing temperature on the kinetics of ferritic grain growth under continuous cooling of a Nb microalloyed steel[J]. Scr Mater,2004,51:721.
18 Liu W J, Jonas J J. Nucleation kinetics of Ti carbonitride in microalloyed austenite[J]. Metall Trans A,1989,20(4):689.
19 Craver A J, He K, Garvie L A J, et al. Complex heterogeneous precipitation in Ti-Nb microalloyed Al-killed HSLA steels-I,(Ti,Nb)(C,N) particles[J]. Acta Mater,2000,48(15):3857.
20 Sun Z Q, Yang W Y, Qi J J, et al. Deformation enhanced transformation and dynamic recrystallization of ferrite in a low carbon steel during multipass hot deformation[J]. Mater Sci Eng A,2002,334(9):201.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 周金华, 申勇峰. 低活化铁素体/马氏体耐热钢中MX型碳氮化物强化研究进展[J]. 材料导报, 2019, 33(11): 1793-1800.
[3] 张永集, 吴光亮, 武尚文. Nb-Ti微合金高强钢动态再结晶动力学及临界条件[J]. 材料导报, 2018, 32(22): 3900-3907.
[4] 张文凤, 邹爱成, 刘运强, 叶东, 刘晓刚, 严伟. 新型多尺度碳氮化物强化马氏体耐热钢的稳定性[J]. 材料导报, 2018, 32(20): 3606-3611.
[5] 王希靖, 魏学玲, 张亮亮. 焊后时效处理对6082-T6铝合金搅拌摩擦焊接头的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 62-65.
[6] 蒲治军,陈东杰,张奎,李兴刚,李永军,马鸣龙,石国梁,袁家伟,李蒙. 关于镁合金中长周期有序结构的研究综述*[J]. 《材料导报》期刊社, 2017, 31(7): 79-82.
[7] 周双双, 刘希琴, 刘子利, 侯志国, 田青超. 正火工艺对冷轧态低合金低温钢组织及拉伸性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 98-104.
[8] 李永坤, 李璐, 周荣锋, 张岩峰, 肖寒, 蒋业华, 卢德宏. ZCuSn10合金半固态流变挤压件显微组织的演变*[J]. 《材料导报》期刊社, 2017, 31(16): 60-64.
[9] 唐徐,李落星,叶拓,李荣启,. 6013-T4铝合金不同温度下的动态流变应力及组织演变[J]. 材料导报编辑部, 2017, 31(10): 87-91.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed