Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 112-116    https://doi.org/10.11896/j.issn.1005-023X.2017.02.024
  材料研究 |
水热法合成MoO3单晶纳米带及其形成机理*
高宾, 张晓军
西安工程大学理学院, 西安 710048;
Hydrothermal Synthesis of Single Crystal α-MoO3 Nanobelts and Their Formation Mechanism
GAO Bin, ZHANG Xiaojun
School of Science, Xi’an Polytechnic University, Xi’an 710048;
下载:  全 文 ( PDF ) ( 1594KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以HCl和Na2MoO4·2H2O为原材料,不用任何模板剂的情况下,用简单的水热法成功地制备了正交相单晶α-MoO3纳米带。用X射线衍射仪、扫描电子显微镜、透射电子显微镜、紫外-可见光分光光度计对产物进行了表征。结果显示,α-MoO3纳米带是由低温条件下形成的亚稳相h-MoO3微米棒通过溶解-重结晶转变而来,其沿着c轴方向生长,加入表面活性剂CTAB可以提高α-MoO3纳米带的长径比。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高宾
张晓军
关键词:  三氧化钼  水热合成  纳米带  形成机理  长径比    
Abstract: Single crystal orthorhombic phase MoO3 (α-MoO3) nanobelts with uniform diameter were successfully prepared through a simple hydrothermal synthesis route at 180 ℃, using solution of sodium molybdate dihydrate as well as hydrochloric acid as raw materials and without template. The products were characterized by X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. It can be concluded that the synthesized α-MoO3 nanobelts were transformed from the metastable phase h-MoO3 micro rods formed at low temperature (<90 ℃) by dissolution-recrystallization, and grew along the c-axis direction. Surfactant CTAB could increase aspect ratio of the prepared α-MoO3 nanobelts.
Key words:  molybdenum trioxide    hydrothermal synthesis    nanobelts    formation mechanism    aspect ratio
               出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TQ127  
基金资助: *国家自然科学基金(51172187);西安工程大学博士科研基金(BS1340);陕西省教育厅自然科学专项(15JK1293)
作者简介:  高宾:男,1974年生,博士,副教授,硕士研究生导师,主要从事发光材料的研究 E-mail:gaobin7401@sina.com
引用本文:    
高宾, 张晓军. 水热法合成MoO3单晶纳米带及其形成机理*[J]. 《材料导报》期刊社, 2017, 31(2): 112-116.
GAO Bin, ZHANG Xiaojun. Hydrothermal Synthesis of Single Crystal α-MoO3 Nanobelts and Their Formation Mechanism. Materials Reports, 2017, 31(2): 112-116.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.024  或          http://www.mater-rep.com/CN/Y2017/V31/I2/112
1 Wang X D, Summers C J , Wang Z L. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays[J]. Nano Lett,2004,4(3):423.
2 Huang M H, Mao S, Feick H N, et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science,2001,292(6):1897.
3 Mao S X, Zhao M H, Wang Z L. Nanoscale mechanical behavior of individual semiconducting nanobelts [J]. Appl Phys Lett,2003,83(5):993.
4 Tao T, Glushenkov A M, Zhang C F, et al. MoO3 nanoparticles dispersed uniformly in carbon matrix: A high capacity composite anode for Li-ion batteries [J]. J Mater Chem,2011,21(25):9350.
5 Li T M,Zeng W,Zhang Y Y, et al. nanobelt-assembled nest-like MoO3 hierarchical structure hydroth[J].Mater Lett,2015,160(7):476.
6 Wu H H, Yang R, Song B M. Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water[J]. ACS Nano,2011,5(2):1276.
7 Sun Y X,Wang J,Zhao B T, et al. Binder-free α-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector [J]. J Mater Chem A,2013,1(15):4736 .
8 Komaba S, Kumagai N, Kumagai R,et al. Molybdenum oxides synthesized by hydrothermal treatment of A2MoO4 (A=Li, Na, K) and electrochemical lithium intercalation into the oxide [J]. Solid State Ionics,2002,152-153:319.
9 He T, Yao J. Photochromism of molybdenum oxide [J]. J Photochem Photobiol C: Photochem Rev,2003,4(2):125 .
10 Hsu C S, Chan C C, Huang H T, et al. Electrochromic properties of nanocrystalline MoO3 thin films [J]. Thin Solid Films,2008,516(15):4839.
11 Liu Y L, Chen K Q, Chen W. Electrochemical performance of new α-MoO3 nanobelt cathode materials for rechargeable Li-ion batteries[J]. Solid State Sci,2014,34(8):43.
12 Zhuo R F, Xu X Y, Feng H T. Morphology-controlled synthesis, growth mechanism, optical and microwave absorption properties of ZnO nanocombs [J]. Adv Mater Res,2010,97(6):960.
13 Jang S Y, Song Y M, Kim H S,et al. Three synthetic routes to single crystalline PbS nanowires with controlled growth direction and their electrical transport properties[J]. ACS Nano,2010,4(12):2391.
14 Hu Z B , Zhou C G , Zheng M R,et al. K-enriched MoO3 nanobundles: A layered structure with high electric conductivity[J]. J Phys Chem C,2012,116(6):3962.
15 Zheng L, Xu Y, Jin D,et al. Novel metastable hexagonal MoO3 nanobelts synthesis, photochromic, and electrochromic properties [J]. Chem Mater,2009,21(2):5681.
16 Lin S Y, Wang C M, Kao K S, et al. Electrochromic properties of MoO3 thin films derived by a sol-gel process [J]. J Sol-Gel Sci Technol,2010,53(1):51.
17 Cordier A, Resende V G, Weibel A, et al. Catalytic chemical vapor deposition synthesis of double-walled and few-walled carbon nanotubes by using a MoO3-supported conditioning catalyst to control the formation of iron catalytic particles within an ±-Al1.8Fe0.2O3 self-supported foam [J]. J Phys Chem C,2010,14(2):19188.
18 Li Y B, Bando Y. Quasi-aligned MoO3 nanotubes grown on Ta substrate [J]. Chem Phys Lett,2002,364(5):484.
19 Zhou J, Xu N S, Deng S Z, et al. Large-area nanowire arrays of molybdenum and molybdenum oxides: Synthesis and field emission properties [J]. Adv Mater,2003,15(21):1835.
20 Niederberger M, Krumeich F, Muhr H J, et al. Synthesis and cha-racterization of novel nanoscopic molybdenum oxide fibers [J]. Mater Chem,2001,11(7):1941.
21 Li X L, Liu J F, Li Y D. Low-temperature synthesis of large-scale single-crystal molybdenum trioxide (MoO3) nanobelts [J]. Appl Phys Lett,2002,81(25):4832.
22 Lou X W, Zeng H C. Hydrothermal synthesis of α-MoO3 nanorods via acidification of ammonium heptamolybdate tetrahydrate [J]. Chem Mater,2002,14(11):4781.
23 Gao Y H, Bando Y, Sato T. Nanobelts of the dielectric material Ge3N4[J]. Appl Phys Lett,2001,79(27):4565.
24 Sun X M, Chen X, Deng Z X, et al. A CTAB-assisted hydrothermal orientation growth of MoO3 nanorods [J]. Chem Phys,2002,78(5):99.
[1] 余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
[2] 周超极, 朱胜, 王晓明, 韩国峰, 周克兵, 徐安阳. 热喷涂涂层缺陷形成机理与组织结构调控研究概述[J]. 材料导报, 2018, 32(19): 3444-3455.
[3] 杨建明, 汤阳, 顾海, 刘永加, 黄大志, 陈劲松. 3D打印制备多孔结构的研究与应用现状[J]. 材料导报, 2018, 32(15): 2672-2683.
[4] 郭 伟,王 春,孙佳胜,陈 艳,俞平胜,蒋金海. 硫铝酸钙-贝利特水泥熟料的低温制备及其水化性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 35-39.
[5] 杜 超,刘 飞,万媛媛,龚泳帆,方永浩. 低质高碳粉煤灰制备粉煤灰贝利特水泥及其特性研究[J]. 《材料导报》期刊社, 2017, 31(24): 30-34.
[6] 吕生华,罗潇倩,张 佳,高党国,孙 立,胡浩岩. 氧化石墨烯调控水泥基材料形成大规模规整结构及其性能表征[J]. 《材料导报》期刊社, 2017, 31(24): 10-14.
[7] 彭红,刘洋,张锦胜,郑洪立,阮榕生. 基于毛竹半纤维素的银纳米粒子的绿色合成*[J]. 材料导报编辑部, 2017, 31(22): 35-42.
[8] 孟凡朋, 樊震坤, 吴奇阳, 张健, 张超, 杨赞中, 张玉军. 陶瓷中空纤维内表面动态水热合成NaA分子筛膜及其表征*[J]. 《材料导报》期刊社, 2017, 31(19): 168-172.
[9] 刘林利, 侯延辉, 刘洋, 李博思, 闵梁, 钱宝舒. Al-Ti-Mg复合脱氧钢研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 81-86.
[10] 赵博,纪妍妍,张兵,王冬梅,张纪梅. 湿凝胶晶化法高效合成X型沸石及其离子交换性能研究*[J]. 材料导报编辑部, 2017, 31(10): 47-50.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed