Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 888-893    https://doi.org/10.11896/j.issn.1005-023X.2018.06.007
  材料研究 |
酒石酸铁改性废旧棉织物Fenton反应催化剂的制备及其应用性能研究
刘广增1, 董永春1, 2, 李冰3, 王鹏1, 崔桂新1, 4
1 天津工业大学纺织学院纺织化学与生态学研究中心,天津 300387;
2 天津工业大学先进纺织复合材料重点实验室, 天津 300387;
3 广西进出口检验检疫局技术中心,南宁 530021;
4 中国纺织科学研究院江南分院,绍兴 312071
Fabrication and Application Performance of Ferric-tartrate-modified Waste Cotton Fabric Serving as Fenton Catalyst
LIU Guangzeng1, DONG Yongchun1, 2, LI Bing3, WANG Peng1, CUI Guixin1, 4
1 Textile Chemistry &
Ecology, School of Textiles, Tianjin Polytechnic University, Tianjin 300387;
;
2 Key Laboratory of Advanced Textile Composite of Ministry of Education, Tianjin Polytechnic University, Tianjin 300387;
3 Inspection and Quarantine Technology Center, Guangxi Entry-Exit Inspection and Quarantine Bureau, Nanning 530021;
4 Jiangnan Branch, China Textile Academy, Shaoxing 312071
下载:  全 文 ( PDF ) ( 1927KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了促进废旧棉织物的综合利用,使用酒石酸通过轧—烘—焙工艺对废旧棉织物进行改性反应以在其表面引入羧酸基,然后将改性后的废旧棉织物与Fe3+反应制备酒石酸铁改性废旧棉织物,重点考察了酒石酸和NaH2PO4浓度以及焙烘温度对废旧棉织物表面羧酸基和Fe3+含量的影响,并使用SEM和FTIR等对其进行表征。最后将酒石酸铁改性废旧棉织物作为非均相Fenton反应光催化剂对偶氮染料酸性红88进行氧化降解反应并评价其催化活性。结果表明,酒石酸与棉纤维表面羟基通过酯化反应而引入的羧酸基,能进一步与Fe3+发生配位反应,由此可以制备酒石酸铁改性废旧棉织物。酒石酸和NaH2PO4浓度的增加以及焙烘温度的升高均能够显著增加酒石酸铁改性废旧棉织物表面Fe3+含量。当酒石酸浓度为10%(质量分数)、NaH2PO4浓度为5%(质量分数)和焙烘温度为180 ℃时,废旧棉织物的改性效果最好。酒石酸铁改性废旧棉织物在光辐射条件下能够加速染料降解反应,其表面Fe3+含量的增加能够提高其催化活性。此外,H2O2浓度为4.5 mmol·L-1、pH值为6及较高温度时染料降解效果最佳。棉纤维表面的染料对酒石酸铁改性废旧棉织物的光催化活性略有影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘广增
董永春
李冰
王鹏
崔桂新
关键词:  废旧棉织物  酒石酸  Fe3+  催化  染料降解    
Abstract: In order to enhance the integrated utilization of waste cotton fabric, tartaric acid was used to modify the waste cotton fabric through pad-dry-cure process for introducing surface hydroxyl groups, which coordinated with Fe3+ ions to produce the ferric tartrate-modified cotton fabric. Effect of concentrations of tartaric acid and NaH2PO4, as well as curing temperature on hydroxyl groups and Fe content on the surface of ferric tartrate-modified cotton fabric was studied. After characterization by SEM and FTIR, ferric tartrate-modified cotton fabric was evaluated as heterogeneous photo-Fenton catalysts for the oxidative degradation of Acid Red 88. The results indicated that carboxyl groups produced from esterfication between tartaric acid and cotton fiber coordinated with Fe3+ ions to prepare the ferric tartrate-modified cotton fabric. Increasing concentrations of tartaric acid and NaH2PO4 as well as elevation of curing temperature enhanced Fe content on the surface of ferric tartrate-modified cotton fabric. The best modification of cotton fabric was obtained at the condition of 10 wt% tartaric acid and 5 wt% NaH2PO4 as well as curing temperature of 180 ℃. The ferric tartrate-modified cotton fabric could accelerate the dye degradation under light irradiation. Higher Fe content could increase its catalytic activity. Besides, increasing H2O2 concentration favored the dye degradation. The highest degradation efficiency of the dye was obtained when 4.5 mmol·L-1 H2O2 was used at pH=6 with higher temperature. The colorants dyed on the ferric tartrate-mo-dified cotton fabric showed a slight effect on its catalytic performance.
Key words:  waste cotton fabric    tartaric acid    iron(Ⅲ) ions;    catalysis    dye degradation
               出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TS195.2  
基金资助: 江苏省高层次创新创业人才计划项目(2015-340); 绍兴市公益性技术应用研究项目(2015B7002)
通讯作者:  董永春,男,1963年生,教授,博士研究生导师,主要从事环境净化与催化材料的研究 E-mail:teamdong@sina.cn   
作者简介:  刘广增:男,1992年生,硕士研究生,主要从事环境净化与催化材料的研究 E-mail:flying318sky@163.com
引用本文:    
刘广增, 董永春, 李冰, 王鹏, 崔桂新. 酒石酸铁改性废旧棉织物Fenton反应催化剂的制备及其应用性能研究[J]. 材料导报, 2018, 32(6): 888-893.
LIU Guangzeng, DONG Yongchun, LI Bing, WANG Peng, CUI Guixin. Fabrication and Application Performance of Ferric-tartrate-modified Waste Cotton Fabric Serving as Fenton Catalyst. Materials Reports, 2018, 32(6): 888-893.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.007  或          http://www.mater-rep.com/CN/Y2018/V32/I6/888
1 Chen Xuhong , et al. The recycling way of waste cotton textiles[J].China Textile Leader,2013(9):53(in Chinese).
陈旭红,等.废旧棉纺织品的回收再利用技术进展[J].纺织导报,2013(9):53.
2 Inoue S, Uno S, Minowa T. Carbonization of cellulose using the hydrothermal method[J].Journal of Chemical Engineering of Japan,2008,41(3):210.
3 Sevilla M, Fuertes A B. The production of carbon materials by hydrothermal carbonization of cellulose[J].Carbon,2009,47(9):2281.
4 Zhu Shengdong, Wu Yuanxin, Yu Ziniu, et al. Progress in production of fuel ethanol from lignocellulosic materials[J].Chemistry & Bioengineering,2003,20(5):8(in Chinese).
朱圣东,吴元欣,喻子牛,等.植物纤维素原料生产燃料酒精研究进展[J].化学与生物工程,2003,20(5):8.
5 Jin M, Lau M W, Balan V, et al. Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST)[J].Bioresource Technology,2010,101(21):8171.
6 Li Ming, Xu Xiuwen. A research on strength loss of cotton fabric by polycarboxylic acid finish[J].Dyeing & Finishing,2001,27(3):5(in Chinese).
李明,徐秀雯.棉织物多元羧酸整理后强力损伤的研究[J].印染,2001,27(3):5.
7 Yang C Q, Wang X, Kang I S. Ester crosslinking of cotton fabric by polymeric carboxylic acids and citric acid[J].Textile Research Journal,1997,67(5):334.
8 Li B, Dong Y, Li L. Preparation and catalytic performance of Fe(III)-citric acid-modified cotton fiber complex as a novel cellulose fiber-supported heterogeneous photo-Fenton catalyst[J].Cellulose,2015,22(2):1295.
9 Xiaohong G, Yang C Q. FTIR spectroscopy study of the formation of cyclic anhydride intermediates of polycarboxylic acids catalyzed by sodium hypophosphite[J].Textile Research Journal,2000,70(1):64.
10 Yang C Q. FT-IR spectroscopy study of the ester crosslinking me-chanism of cotton cellulose[J].Textile Research Journal,1991,61(8):433.
11 Dong Y C, Han Z B, Liu C Y, et al. Preparation and photocatalytic performance of Fe (Ⅲ)-amidoximated PAN fiber complex for oxidative degradation of azo dye under visible light irradiation[J].Science of the Total Environment,2010,408,2245.
12 Sang Y O, Dong I Y, Shin Y, et al. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy[J].Carbohydrate Research,2005,340(15):2376.
13 潘才元.功能高分子[M].北京:科学出版社,2006:55.
14 Zhu J, Gao Q, Zhi C. Preparation of mesoporous copper cerium bimetal oxides with high performance for catalytic oxidation of carbon monoxide[J].China Synthetic Resin & Plastics,2006,81(3):236.
15 Cui Guixin, Dong Yongchun, Wang Peng, et al. Preparation of Fe-citric acid modified cotton fiber complex and their catalytic effect for dye degradation[J].Journal of Functional Materials,2016,47(9):9197(in Chinese).
崔桂新,董永春,王鹏,等.柠檬酸改性棉纤维铁配合物的制备及其对染料的光催化降解作用[J].功能材料,2016,47(9):9197.
16 He Feng, Zhou Na, Lei Lecheng, et al. Treatment of dying wastewater by the photo-fenton process[J].Technology of Water Treatment,2004,30(6):344(in Chinese).
何锋,周娜,雷乐成,等.光助Fenton氧化处理染料废水的实验研究[J].水处理技术,2004,30(6):344.
17 Muruganandham M, Swaminathan M. Photochemical oxidation of reactive azo dye with UV-H2O2, process[J].Dyes & Pigments,2004,62(3):269.
18 Li B, Dong Y, Ding Z. Photoassisted degradation of CI Reactive Red 195 using an Fe(III)-grafted polytetrafluoroethylene fibre complex as a novel heterogeneous Fenton catalyst over a wide pH range[J].Coloration Technology,2013,129(6):403.
19 Huang K C, Couttenye R A, Hoag G E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE)[J].Chemosphere,2002,49(4):413.
20 陈英.染整工艺实验教程[M].北京:中国纺织出版社,2009:64.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[3] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[4] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[5] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[6] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[7] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[8] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[9] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[10] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[11] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[12] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[13] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[14] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[15] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed