Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22090150-7    https://doi.org/10.11896/cldb.22090150
  高分子与聚合物基复合材料 |
3D打印连续纤维增强树脂T型梁的弯曲性能
吴思远1,2, 单忠德1,3,*, 陈恳2, 刘丰1, 刘晓军1, 严春晖1
1 中国机械科学研究总院集团有限公司先进成形技术与装备国家重点实验室,北京 100048
2 清华大学机械工程系,北京 100084
3 南京航空航天大学机电学院,南京 210016
Flexural Properties of 3D Printed Continuous Fiber Reinforced Resin T-beams
WU Siyuan1,2, SHAN Zhongde1,3,*, CHEN Ken2, LIU Feng1, LIU Xiaojun1, YAN Chunhui1
1 State Key Laboratory of Advanced Forming Technology and Equipment, China Academy of Machinery Science & Technology Group Co., Ltd., Beijing 100048, China
2 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
3 College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 15830KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于熔融沉积技术的连续纤维增强树脂3D打印工艺为梁结构的制造提供了一种新的途径,该工艺具有快速近净成型、可设计性强等优势,能够实现梁结构的轻量化、功能化设计和制造。本工作对筋高0 mm与5 mm的T型梁打印件在不同打印参数下的弯曲性能进行测试实验,研究了打印厚度分别为0.7 mm、0.8 mm、0.9 mm时与打印丝束间距分别为0.6 mm、0.7 mm、0.8 mm时T型梁对应的弯曲强度与模量。由于3D打印连续纤维增强树脂材料存在着复杂的破坏模式,本研究运用声发射技术对T型梁的弯曲破坏过程进行测试分析,采用主成分分析法与K-means++聚类算法对采集的过程信号进行损伤分类。结果表明,当打印层厚为0.7~0.9 mm时,随着打印层厚的增加,T型梁的弯曲强度与模量均降低。当打印丝束间距为0.6~0.8 mm时,随着打印丝束间距的增加,T型梁的弯曲强度与模量降低。在T型梁从弯曲载荷加载初始到破坏失效阶段,对应特征信号可以聚类为五类,分别对应五种破坏模式,即基体开裂、层间剥离、纤维与基体脱粘、纤维开裂及纤维断裂,分类结果能够很好地解释弯曲破坏过程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴思远
单忠德
陈恳
刘丰
刘晓军
严春晖
关键词:  3D打印  T型梁  弯曲性能  声发射  主成分分析  K-means++    
Abstract: The continuous fiber reinforced resin 3D printing based on fused deposition technology offers a new rapid prototyping method for the fabrication of beam structures. It is also highly designable and enables the forming of lightweight and multifunctional beam structures. In this work, the flexural performance of T-beams with 0 mm and 5 mm rib heights at different printing parameters were tested. The flexural strengths and modulus of T-beams were investigated for print thicknesses of 0.7 mm, 0.8 mm and 0.9 mm and print spacing of 0.6 mm, 0.7 mm and 0.8 mm. At the same time, the acoustic emission technology was used to test and analyze the flexural failure process of the T-beam. The research utilized principal component analysis method and K-means++clustering algorithm to classify the collected signal damage. The results indicate that within the thickness of 0.7—0.9 mm, the flexural strength and modulus of the T-beam decrease with the increase of the thickness of the printing layer. Within the 0.6—0.8 mm spacing between the printing filaments, with the increase in the spacing between the printing filaments, the flexural strength and modulus of the T-beam also decrease correspondingly. From the initial loading of the T-beam to the failure stage of failure, the corresponding characteristic signals can be clustered into five categories. Corresponding to five failure modes, namely matrix cracking, interlayer debonding, fiber and resin debonding, fiber cracking and fiber fracture, the classification results can explain the failure process well.
Key words:  3D printing    T-beam    flexural performance    acoustic emission    principal component analysis    K-means++
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TH162  
基金资助: 国防科技基础加强计划;国家轻量化材料成形技术及装备创新中心基金(111902Q-A);先进成形技术与装备国家重点实验室开放基金(SKL2020001;SKL2020007);中国机械总院技术发展基金(312106Q9)
通讯作者:  单忠德,南京航空航天大学机电工程学院教授、博士研究生导师。1993年7月与1996年5月分别于西安理工大学获得工学学士与硕士学位。2002年7月获得清华大学材料加工工程博士学位。主要从事数字化机械装备与先进成形制造技术、航空宇航制造技术与装备及绿色智能制造技术与装备研究。发表SCI、EI论文90余篇,出版学术著作四部,授权发明专利90余件,其中美、日、欧等国际发明32件。shanzd@nuaa.edu.cn   
作者简介:  吴思远,2013年6月、2016年1月分别于辽宁工业大学和哈尔滨工业大学获得工学学士学位和硕士学位。目前在单忠德教授的指导下进行课题研究。主要研究方向为增材制造成形机理、成形装备与关键成形工艺及机电一体化智能设备。
引用本文:    
吴思远, 单忠德, 陈恳, 刘丰, 刘晓军, 严春晖. 3D打印连续纤维增强树脂T型梁的弯曲性能[J]. 材料导报, 2024, 38(7): 22090150-7.
WU Siyuan, SHAN Zhongde, CHEN Ken, LIU Feng, LIU Xiaojun, YAN Chunhui. Flexural Properties of 3D Printed Continuous Fiber Reinforced Resin T-beams. Materials Reports, 2024, 38(7): 22090150-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090150  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22090150
1 Kabir S,Mathur K,Seyam A.Composite Structures,2020,232(15),111476.1.
2 Sang L,Han S,Li Z,et al.Composites Part B: Engineering,2019,164,629.
3 Yu L,Chen K,Xue P,et al.Polymer Composites,2021,11(42),5731.
4 Fan Chongze,Shan Zhongde,Zou Guisheng,et al.China Mechanical Engineering,2020,31(9),1089(in Chinese).
范聪泽,单忠德,邹贵生,等.中国机械工程,2020,31(9),1089.
5 Chacón J,Caminero M,Núnez P,et al.Composites Science and Technology,2019,181,107688.
6 Peng Y,Wu Y,Li S,et al.Composites Science and Technology,2020,199,108337.
7 Goh G D,Dikshit V,Nagalingam A P,et al.Materials & Design,2018,137,79.
8 Yan Dongdong,Shan Zhongde,Zhan Li,et al.China Mechanical Enginee-ring,2020,31(10),1240(in Chinese).
闫东东,单忠德,战丽,等.中国机械工程,2020,31(10),1240.
9 Caminero M A,Chacón J M,García-Moreno I.Polymer Testing, 2018,68,415.
10 Luo M,Tian X,Shang J,et al.Composites Part A: Applied Science and Manufacturing,2019,121,130.
11 Tian X,Liu T,Yang C,et al.Composites Part A: Applied Science and Manufacturing,2016,88,198.
12 Werken N,Hurley J,Khanbolouki P,et al.Composites Part B,Enginee-ring,2019,160(1),684.
13 Sugiyama K,Matsuzaki R,Ueda M,et al.Composites Part A: Applied Science and Manufacturing,2018,113,114.
14 Hou Z,Tian X,Zhang J,et al.Composite Structures,2018,184(15),1005.
15 Quan C,Han B,Hou Z,et al.Composites Part B: Engineering,2020,187,107858.
16 Tong L,Stevens G P.Analysis and design of structural bonded joints,Kluwer Academic Publishers,Hingham,MA,1999.
17 Mouritz A P,Gellert E,Burchill P,et al.Composite Structures,2001,53(1),21.
18 Burns L A,Mouritz A P,Pook D,et al.Composites Part A-Applied Science and Manufacturing,2012,43(11),1971.
19 Hélénon F,Wisnom M R,Hallett S R,et al.Composites Part A-Applied Science and Manufacturing,2012,43(7),1017.
20 Zhang Zhongwei,Yan Jing,Shun Baozhong,et al.Journal of Donghua University(Natural Science Edition),2014,40(5),522(in Chinese).
张中伟,严静,孙宝忠,等.东华大学学报(自然科学版),2014,40(5),522.
21 Ouyang Y,Wang H,Gu B,Sun B.Journal of the Textile Institute,2018,109(5),603.
22 Zhai J,Zeng T,Xu G D,Wang Z,Cheng S,et al.Composites Part B: Engineering,2017,110,476.
23 Zhang Jiashun,Li Qianqian,Li Wei. Journal of Textile Science & Engineering,2021,38(1),1(in Chinese).
张加顺,李倩倩,李炜.纺织科学与工程学报,2021,38(1),1.
24 Nazaripoor H,Ashrafizadeh H,Schultz R,et al.Journal of Composites Science,2022,6(2),48.
25 Beheshtizadeh N,Mostafapour A,Davoodi S.Alexandria Engineering Journal,2019,58(2),567.
[1] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[2] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[3] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[4] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[5] 毕钰, 秦拥军, 阳毅恒, 陈奇, 杨亮. 金属波纹管浆锚连接预制钢筋混凝土剪力墙声发射性能研究[J]. 材料导报, 2024, 38(24): 23100230-9.
[6] 唐振中, 贾鲁涛, 林永权, 吴捷, 张亚梅. 钨尾矿粉对水泥基3D打印混凝土流变、水化及力学性能的影响[J]. 材料导报, 2024, 38(21): 23060169-6.
[7] 周英伟, 樊玉鹏, 于瑞龙, 谭锐, 马月婷, 王鹏伟, 尹绍奎. 选择性激光烧结用聚合物复合材料的研究进展[J]. 材料导报, 2024, 38(19): 23020110-9.
[8] 李长志, 周新斌, 魏世恭, 马昆林, 于连山, 邹卫东. 粗骨料形态特征差异及其与堆积空隙率关系的研究[J]. 材料导报, 2024, 38(17): 23030064-9.
[9] 郝舒琪, 苏海军, 赵迪, 李翔, 董栋, 于佳俊. 粉体特性对光固化3D打印陶瓷浆料性质影响的研究进展[J]. 材料导报, 2024, 38(17): 23060075-10.
[10] 王俊, 相泽辉, 牛建刚, 许文明. CFRP条带和混凝土帆布联合加固混凝土短柱声发射性能研究[J]. 材料导报, 2024, 38(14): 22100117-8.
[11] 钟旷楠, 刘志超, 王发洲. 碳化养护制备钢渣粉3D打印材料及其性能研究[J]. 材料导报, 2024, 38(14): 23040244-8.
[12] 余宸, 田威, 王杰, 高晋峰. 砂型3D打印材料在岩体物理模型试验中的应用研究及展望[J]. 材料导报, 2024, 38(12): 22120133-9.
[13] 宗学文, 刘亮晶, 田航, 王涛, 韦毅博. 不同SiC/ZnO含量对光敏树脂固化特性及力学性能的影响[J]. 材料导报, 2024, 38(11): 22060235-7.
[14] 李聪, 余冉, 刘太楷, 邓春明, 邓畅光, 刘敏. 基于3D打印技术的甲烷水蒸气重整研究[J]. 材料导报, 2024, 38(10): 23020015-9.
[15] 刘雄飞, 侯冠宇, 蔡华崇, 李之建. 协同连续布筋增韧喷射3D打印混凝土的抗弯性能[J]. 材料导报, 2024, 38(1): 22090102-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed