Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23040244-8    https://doi.org/10.11896/cldb.23040244
  无机非金属及其复合材料 |
碳化养护制备钢渣粉3D打印材料及其性能研究
钟旷楠1, 刘志超2,3,*, 王发洲3
1 武汉理工大学材料科学与工程国际化示范学院,武汉 430070
2 武汉理工大学材料科学与工程学院,武汉 430070
3 硅酸盐建筑材料国家重点实验室(武汉理工大学),武汉 430070
Preparation and Properties of CO2 Curable Steel Slag Powder 3D Printing Material
ZHONG Kuangnan1, LIU Zhichao2,3,*, WANG Fazhou3
1 International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
2 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
3 State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), Wuhan 430070, China
下载:  全 文 ( PDF ) ( 8202KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作提出了一种碳化养护钢渣粉3D打印材料的制备方法。以钢渣粉为主要胶凝材料,利用少量普通硅酸盐水泥的高水化活性保证材料打印成型后的初始强度,增强打印材料的可建造性;材料体系中硅灰颗粒的“滚珠效应”改善了打印材料的可挤出性;使用聚乙烯醇(PVA)、羧甲基纤维素钠(CMC)作为流变调节组分进一步调控打印材料的流变性能,满足材料打印性能需求。研究了拌合水固比与流变调节组分掺量对钢渣粉3D打印材料流变性能、打印性能与力学强度的影响规律,探究了碳化养护过程中钢渣粉3D打印材料成分变化与微观结构演变。结果表明,当浆料拌合水固比为0.16,PVA与CMC掺量分别为0.2%(质量分数,下同)、0.1%时,钢渣粉3D打印材料具有最佳的打印性能与力学强度,打印样品经12 h碳化养护后抗压强度为64 MPa;碳化养护过程中,大量镁方解石碳化反应产物填充基体孔隙,迅速提高打印材料基体的致密程度,是打印材料力学性能快速发展的主要机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟旷楠
刘志超
王发洲
关键词:  钢渣粉  3D打印  碳化  打印性能  力学强度    
Abstract: ACO2 curable steel slag powder 3D printing material was designed based on the high carbonation activity of steel slag powder. In steel slag 3D printing material, steel slag was used as the main binder, a small amount of hydraulic ordinary Portland cement was used to ensure the initial strength of printing structure and enhance the buildability of the steel slag printing slurries. The appropriate amount of SF was applied to improve the extrudability of steel slag printing slurries, due to the ball-rolling effect of SF particles. And in order to meet the printing performance requirements of steel slag 3D printing materials, PVA and CMC were used to further regulate the rheological properties. Effect of water to solid ratio and proportion of rheology modifying agent on rheological property, printability and mechanical property of steel slag 3D printing materials was investigated. Composition and microstructure changes of steel slag 3D printing materials during carbonation curing were illustrated. The result showed that the steel slag 3D printing material displayed the best printability and mechanical strength when the mixing W/S was 0.16, while the proportions of PVA and CMC were 0.2wt% and 0.1wt%, respectively. The compressive strength of printing samples reached 64.0 MPa after 12 h carbonation curing. During the carbonation curing, a large amount magnesium calcite, what was the main carbonation product, filled the matrix pores and rapidly densified the printing samples, which was main mechanism for the development of steel slag 3D printing materials’ mechanical properties.
Key words:  steel slag powder    3D printing    carbonation    printability    mechanical property
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TU528  
基金资助: 国家自然科学基金(U2001227)
通讯作者:  * 刘志超,武汉理工大学材料科学与工程学院教授、博士研究生导师。2006年武汉理工大学材料科学与工程专业本科毕业,2009年武汉理工大学建筑材料与工程专业硕士毕业,2014年美国密歇根大学安娜堡分校土木工程专业博士毕业,2017年武汉理工大学材料科学与工程学院工作至今。目前主要从事低碳胶凝材料、超高性能水泥基材料方面的研究工作。发表论文 30 余篇,包括Cement and Concrete Research、ACS Sustainable Chemistry & Engineering、Additive Manufacturing等。liuzc9@whut.edu.cn   
作者简介:  钟旷楠,2020年7月在武汉理工大学获得工学学士学位。现为武汉理工大学材料科学与工程学院博士研究生,研究方向为3D打印建筑材料的制备。
引用本文:    
钟旷楠, 刘志超, 王发洲. 碳化养护制备钢渣粉3D打印材料及其性能研究[J]. 材料导报, 2024, 38(14): 23040244-8.
ZHONG Kuangnan, LIU Zhichao, WANG Fazhou. Preparation and Properties of CO2 Curable Steel Slag Powder 3D Printing Material. Materials Reports, 2024, 38(14): 23040244-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040244  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23040244
1 Hamidi F, Aslani F. Construction and Building Materials, 2019, 218, 582.
2 Buchli J, Giftthaler M, Kumar N,et al. Cement and Concrete Research, 2018, 66, 66.
3 ZhangJ C, Wang J L, Dong S F, et al. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105533.
4 Qi S, Li Q Y, Cui X P, et al. Concrete, 2021(1), 36 (in Chinese).
齐甦, 李庆远, 崔小鹏,等. 混凝土, 2021(1), 36.
5 Lyu C, Liu J. Polymer Bulletin, 2022(7), 39(in Chinese).
吕春, 刘杰. 高分子通报, 2022(7), 39.
6 Shi Q X, Wan S M. Industrial Construction, 2022, 52(5), 208(in Chinese).
史庆轩, 万胜木. 工业建筑, 2022, 52(5), 208.
7 Panda B, Paul S C, Hui L J, et al. Journal of Cleaner Production, 2017, 167, 281.
8 Raza M H, Zhong R Y, Khan M. Additive Manufacturing, 2022, 52, 26.
9 Ma S L, Jiang W Z, Xiao W, et al. China Concrete, 2022(1), 45(in Chinese).
马世龙, 江汪正, 肖伟, 等. 混凝土世界, 2022(1), 45.
10 Ma G W, Yan Y F, Zhang M, et al. Ceramics International, 2022, 48, 26233.
11 Zhu L L, Yang Z, Zhao Y, et al. Material Reports, 2023, 37(12), 1(in Chinese).
朱伶俐, 杨章, 赵宇, 等. 材料导报, 2023, 37(12), 1.
12 Yan Y F, Zhang M. China Building Materials Science & Technology, 2021, 30(3), 102(in Chinese).
颜昱非, 张默. 中国建材科技, 2021, 30(3), 102.
13 Zhang D W, Wang D M, Pu C A, et al. Journal of Basic Science and Engineering, 2018, 26(3), 596(in Chinese).
张大旺, 王栋民, 朴春爱, 等. 应用基础与工程科学学报, 2018, 26(3), 596.
14 Dai S, Zhu H J, Zhai M N, et al. Construction and Building Materials, 2021, 299, 123938.
15 Chang J, Wu H Z. Journal of Chinese Ceramic Society, 2010, 38(7), 1185(in Chinese).
常钧, 吴昊泽. 硅酸盐学报, 2010, 38(7), 1185.
16 Luo Z T, Wang Y, Ye J Y, et al. Construction and Building Materials, 2021, 291, 123369.
17 Wang A G, He M C, Mo L W, et al. Materials Reports, 2019,33(17), 2939(in Chinese).
王爱国, 何懋灿, 莫立武, 等. 材料导报, 2019,33(17), 2939.
18 Fang Y F, Wang D, Wang Q, et al. Materials Reports, 2020, 34(3), 132 (in Chinese).
房延凤, 王丹, 王晴, 等. 材料导报, 2020, 34(3), 132.
19 Liu Z C, Zeng H M, Wang F Z. Construction and Building Materials, 2021, 291, 123317.
20 Jiao Z K, Wang D M, Wang Q B, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(6), 1821(in Chinese).
焦泽坤, 王栋民, 王启宝, 等. 硅酸盐通报, 2021, 40(6), 1821.
21 Chen J G, Chen Y, Ma Y L, et al. New Building Materials, 2021, 48(11), 5(in Chinese).
陈剑刚, 陈瑜, 马云龙, 等. 新型建筑材料, 2021, 48(11), 5.
22 Zhao Y, Wu X K, Zhu L L, et al. Material Reports, 2023, 37(6), 113(in Chinese).
赵宇, 武喜凯, 朱伶俐, 等. 材料导报, 2023, 37(6), 113.
23 Zhang X Y, Wang L, Fang D, et al. Concrete, 2021(7), 38(in Chinese).
张心颖, 王里, 冯舵, 等. 混凝土, 2021(7), 38.
24 Fei Q, Hu S C, Ding Y, et al. Concrete, 2022(5), 150(in Chinese).
裴强, 胡顺彩, 丁彧, 等. 混凝土, 2022(5), 150.
25 Huang S, Zhang W Q, Liu Z C, et al. Material Reports, 2023, 37(19), 1(in Chinese).
黄帅, 张文芹, 刘志超, 等. 材料导报, 2023, 37(19), 1.
26 Zhao S X, Liu Z C, Wang F Z, et al. ACS Sustainable Chemistry & Engineering, 2021, 9, 6673.
27 Zeng H M, Liu Z C, Wang F Z. Journal of Chinese Ceramic Society, 2022, 48(11), 1801(in Chinese).
曾海马, 刘志超, 王发洲. 硅酸盐学报, 2022, 48(11), 1801.
28 Zhang X Z, Liu Z C, Wang F Z. Construction and Building Materials, 2022, 347, 128251.
[1] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[2] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[3] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[4] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[5] 吴思远, 单忠德, 陈恳, 刘丰, 刘晓军, 严春晖. 3D打印连续纤维增强树脂T型梁的弯曲性能[J]. 材料导报, 2024, 38(7): 22090150-7.
[6] 邓开鑫, 刘澄虎, 于志庆, 黄文斌, 魏强, 周亚松. 碳化钼的结构、制备及应用研究进展[J]. 材料导报, 2024, 38(5): 22080058-18.
[7] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[8] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[9] 李文清, 曹睿, 杨飞, 徐晓龙, 毛兴贵, 蒋勇, 闫英杰. 影响P91耐热钢焊缝金属冲击韧性的因素分析[J]. 材料导报, 2024, 38(3): 22080097-5.
[10] 赵华, 唐杰, 刘伟男. 碳化硅沥青胶浆自愈合行为研究及最佳掺量的确定[J]. 材料导报, 2024, 38(14): 23040058-12.
[11] 刘亮, 李思雨, 赵春霞, 向东, 李云涛, 李辉. 纤维素基碳材料应变传感器的制备及性能[J]. 材料导报, 2024, 38(13): 22110159-6.
[12] 余宸, 田威, 王杰, 高晋峰. 砂型3D打印材料在岩体物理模型试验中的应用研究及展望[J]. 材料导报, 2024, 38(12): 22120133-9.
[13] 梁咏宁, 刘务东, 赵凯, 季韬. 加速碳化条件下不同养护制度对碱矿渣混凝土钢筋锈蚀的影响[J]. 材料导报, 2024, 38(11): 22090297-8.
[14] 宗学文, 刘亮晶, 田航, 王涛, 韦毅博. 不同SiC/ZnO含量对光敏树脂固化特性及力学性能的影响[J]. 材料导报, 2024, 38(11): 22060235-7.
[15] 生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed