Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23020110-9    https://doi.org/10.11896/cldb.23020110
  高分子与聚合物基复合材料 |
选择性激光烧结用聚合物复合材料的研究进展
周英伟1, 樊玉鹏2, 于瑞龙1, 谭锐1, 马月婷1, 王鹏伟1, 尹绍奎1,*
1 高端装备铸造技术全国重点实验室,沈阳 110022
2 西安西航集团莱特航空制造技术有限公司,西安 710018
Research Progress of Polymer Composites for Selective Laser Sintering
ZHOU Yingwei1, FAN Yupeng2, YU Ruilong1, TAN Rui1, MA Yueting1, WANG Pengwei1, YIN Shaokui1, *
1 National Key Laboratory of Advanced Casting Technologies, Shenyang 110022, China
2 Xi'an XAE Flying Aviation Manufacturing Technology Co., Ltd., Xi'an 710018, China
下载:  全 文 ( PDF ) ( 51229KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选择性激光烧结(Selective laser sintering,SLS)技术是一种重要的增材制造(3D打印)技术,其成型原料主要为粉末状材料,聚合物材料是SLS技术中应用最早且最广泛的材料。随着人们对SLS成型产品各种性能要求的日益增多,用于SLS技术的聚合物材料由于种类少且性能单一,已经无法满足其成型需求。通过对聚合物材料进行复合改性制备复合材料,不仅可以提高SLS成型产品的性能,而且能够丰富SLS材料的种类,目前聚合物材料的复合改性研究已经成为SLS材料领域的热点和重点。本文介绍了SLS用聚合物材料复合改性的方法,阐述了各种方法的特点及国内外的研究现状,并对SLS用聚合物复合材料未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周英伟
樊玉鹏
于瑞龙
谭锐
马月婷
王鹏伟
尹绍奎
关键词:  3D打印  选择性激光烧结  聚合物  复合材料    
Abstract: Selective laser sintering (SLS) is an important additive manufacturing (3D printing) technology, and its raw materials are mainly powder materials, among which polymer materials are the earliest and most widely used materials in SLS technology. With the increasing demand for various performance requirements of SLS products, polymer materials used in SLS technology are currently unable to meet their molding needs due to their limited variety and single performance. At present, research on the preparation of composite materials through composite modification of polymer materials has attracted the interest of researchers in this field, as it can not only improve the performance of SLS formed products but also enrich the variety of SLS materials. In this paper, the composite modification methods of polymer materials used in SLS are introduced, the characteristics of various methods and the research status at home and abroad are elaborated, and the future research direction of polymer composite materials used in SLS is prospected.
Key words:  3D printing    selective laser sintering    polymer    composites
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TH145.4  
基金资助: 中央引导地方科技发展资金项目(2021JH6/10500245)
通讯作者:  *尹绍奎,通信作者,中国机械科学研究总院集团有限公司杰出复合型专家、研究员、硕士研究生导师。目前主要从事机械工业造型材料、铸件产品质量检测、铸造工艺技术等方面的研究工作。在核心刊物和国内学术会议上发表论文20余篇,参与编著《铸造行业十三五技术发展规划》、《铸造手册·第4卷·造型材料》、《铸造手册·第5卷·铸造工艺》等著作。13082477889@163.com   
作者简介:  周英伟,2016年6月、2019年1月分别于辽宁科技大学和东北大学获得工学学士学位和硕士学位。现为中国机械总院集团沈阳铸造研究所有限公司工程师。目前主要研究领域为3D打印技术与材料研发。
引用本文:    
周英伟, 樊玉鹏, 于瑞龙, 谭锐, 马月婷, 王鹏伟, 尹绍奎. 选择性激光烧结用聚合物复合材料的研究进展[J]. 材料导报, 2024, 38(19): 23020110-9.
ZHOU Yingwei, FAN Yupeng, YU Ruilong, TAN Rui, MA Yueting, WANG Pengwei, YIN Shaokui. Research Progress of Polymer Composites for Selective Laser Sintering. Materials Reports, 2024, 38(19): 23020110-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020110  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23020110
1 Werken N V D, Tekinalp H, Khanbolouki P, et al. Additive Manufacturing, 2020, 31, 100962.
2 Lupone F, Padovano E, Casamento F, et al. Materials, 2021, 15(1), 183.
3 Li Z C, Gan X P, Fei G X, et al. Polymer Materials Science & Engineering, 2017, 33(10), 170 (in Chinese).
李志超, 甘鑫鹏, 费国霞, 等. 高分子材料科学与工程, 2017, 33(10), 170.
4 Gong X D. Study on the preparation and properties of polypropylene powder for selective laser sintering. Master's Thesis, University of Chinese Academy of Sciences (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences), China, 2019(in Chinese).
龚小弟. 选择性激光烧结聚丙烯粉末的制备与性能研究. 硕士学位论文, 中国科学院大学 (中国科学院重庆绿色智能技术研究院), 2019.
5 Yan C Z, Shi Y S, Yang J S, et al. Polymer Materials Science & Engineering, 2010, 26(8), 145 (in Chinese).
闫春泽, 史玉升, 杨劲松, 等. 高分子材料科学与工程, 2010, 26(8), 145.
6 Tan L J Y, Zhu W, Zhou K. Advanced Functional Materials, 2020, 30(43), 2003062.
7 Schmid M, Amado A, Wegener K. AIP Conference Proceedings, 2015, 1664, 160009.
8 Yan C Z, Shi Y S, Yang J S, et al. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2008, 36(3), 20 (in Chinese).
闫春泽, 史玉升, 杨劲松, 等. 华中科技大学学报: 自然科学版, 2008, 36(3), 20.
9 Feng D, Wang B, Qi F W, et al. Chemical Industry and Engineering Progress, 2020, 40(8), 4290 (in Chinese).
冯东, 王博, 戚方伟, 等. 化工进展, 2020, 40(8), 4290.
10 Berretta S, Evans K, Ghita O. Materials & Design, 2018, 139, 141.
11 Yuan S Q, Shen F, Chua C K, et al. Progress in Polymer Science, 2019, 91, 141.
12 Liu G, Zhang X F, Chen X L, et al. Materials Science and Engineering R: Reports, 2021, 145, 100596.
13 Salmoria G V, Leite J L, Ahrens C H, et al. Polymer Testing, 2007, 26(3), 361.
14 Salmoria G V, Leite J L, Vieira L F, et al. Polymer Testing, 2012, 31(3), 411.
15 Salmoria G V, Lauth V R, Cardenuto M R, et al. Optics & Laser Technology, 2018, 98, 92.
16 Dechet M A, Gómez Bonilla J S, Lanzl L, et al. Polymers, 2018, 10(12), 1373.
17 Greiner S, Wudy K, Lanzl L, et al. Polymer Testing, 2017, 64, 136.
18 Salmoria G V, Leite J L, Paggi R A. Polymer Testing, 2009, 28(7), 746.
19 Leite J L, Salmoria G V, Paggi R A, et al. International Journal of Materials and Product Technology, 2010, 39(1-2), 205.
20 Lao S C, Yong W, Nguyen K, et al. Journal of Composite Materials, 2010, 44(25), 2933.
21 Tran N T, Pham N T H. International Journal of Polymer Science, 2021, 2021, 1.
22 Drummer D, Wudy K, Kühnlein F, et al. Physics Procedia, 2012, 39, 509.
23 Leite J L, Salmoria G V, Paggi R A, et al. The International Journal of Advanced Manufacturing Technology, 2012, 59(5), 583.
24 Salmoria G V, Leite J L, Paggi R A, et al. Polymer Testing, 2008, 27(6), 654.
25 Zhang X D, Guo Y L, Yu Y Q, et al. China Plastics, 2020, 34(1), 11(in Chinese).
张晓东, 郭艳玲, 于跃强, 等. 中国塑料, 2020, 34(1), 11.
26 Parandoush P, Lin D. Composite Structures, 2017, 182, 36.
27 Goh G D, Yap Y L. Advanced Materials Technologies, 2019, 4(1), 1800271.
28 Nath S D, Nilufar S. Polymers, 2020, 12(11), 2719.
29 Czelusniak T, Amorim F L. The International Journal of Advanced Manufacturing Technology, 2020, 110(7), 2049.
30 Lanzl L, Wudy K, Drummer D. Polymer Testing, 2020, 83, 106313.
31 Badini C, Padovano E, Camillis R D, et al. Journal of Applied Polymer Science, 2020, 137(38), 49152.
32 Arai S, Tsunoda S, Yamaguchi A, et al. Additive Manufacturing, 2018, 21, 683.
33 Jing W, Hui C, Qiong W, et al. Materials & Design, 2017, 116, 253.
34 Yan C Z, Hao L, Xu L, et al. Composites Science and Technology, 2011, 71(16), 1834.
35 Jansson A, Pejryd L. Additive Manufacturing, 2016, 9, 7.
36 Chen H, Zhu W, Tang H B, et al. International Journal of Machine Tools and Manufacture, 2021, 163, 103703.
37 Berti G, D'Angelo L, Gatto A, et al. Rapid Prototyping Journal, 2007, 16(2), 124.
38 Ippolito F, Rentsch S, Hübner G, et al. Composites Part B: Engineering, 2019, 164, 158.
39 Özbay B, Serhatlι ł E. Materials Technology, 2022, 37(4), 213.
40 Jiang J, Yang S, Li L, et al. Polymers for Advanced Technologies, 2020, 31(6), 1291.
41 Yuan Y, Hu H B, Wu W, et al. Polymer Composites, 2021, 42(8), 4105.
42 Yuan Y, Wu W, Hu H B, et al. RSC Advances, 2021, 11(4), 1984.
43 Mousa A A, Pham D T, Shwe S P. International Journal of Rapid Manufacturing, 2014, 4(1), 28.
44 Mousa A A. Jordan Journal of Mechanical & Industrial Engineering, 2014, 8(5), 265.
45 Rouway M, Nachtane M, Tarfaoui M, et al. The International Journal of Advanced Manufacturing Technology, 2021, 115(1), 61.
46 Wang J H, Bai P K, Zhang Z L, et al. Advanced Materials Research, 2011, 160, 756.
47 Yu G Y, Ma J D, Li J, et al. Polymers, 2022, 14(11), 2167.
48 Bai J M, Song J, Wei J. Journal of Materials Processing Technology, 2019, 264, 382.
49 Kenzari S, Bonina D, Dubois J M, et al. Materials & Design, 2012, 35, 691.
50 Mazzoli A, Moriconi G, Pauri M G. Materials & Design, 2007, 28(3), 993.
51 Jayakumar A, Singamneni S, Ramos M, et al. Materials, 2017, 10(7), 796.
52 Balzereit S, Proes F, Altstádt V, et al. Additive Manufacturing, 2018, 23, 347.
53 Lanzl L, Wudy K, Greiner S, et al. Polymer Composites, 2019, 40(5), 1801.
54 Bekem A, Ozbay B, Bulduk M E. Journal of the Faculty of Engineering and Architecture of Gazi University, 2021, 36(1), 421.
55 Li Z C, Wang Z H, Gan X P, et al. Macromolecular Materials and Engineering, 2017, 302(11), 1700211.
56 Wu H, Fahy W P, Kim S, et al. Progress in Materials Science, 2020, 111, 100638.
57 Bai J M, Goodridge R D, Yuan S Q, et al. Molecules, 2015, 20(10), 19041.
58 Rollo G, Ronca A, Cerruti P, et al. Polymers, 2020, 12(8), 1841.
59 Chen B L, Davies R, Liu Y A, et al. Additive Manufacturing, 2020, 35, 101363.
60 Xi S T, Zhang P Y, Huang Y J, et al. Polymer, 2020, 186, 122044.
61 Hupfeld T, Sommereyns A, Riahi F, et al. Materials, 2020, 13(15), 3312.
62 Goodridge R D, Shofner M L, Hague R J M, et al. Polymer Testing, 2011, 30(1), 94.
63 Yuan S Q, Zheng Y, Chua C K, et al. Composites Part A: Applied Science and Manufacturing, 2018, 105, 203.
64 Yuan S Q, Bai J M, Chua C K, et al. Polymers, 2016, 8(10), 370.
65 Wang X H, Jiao Q Z, Gao M M, et al. Polymer Composites, 2019, 40(3), 1251.
66 Zheng H Z, Zhang J, Lu S Q, et al. Materials Letters, 2006, 60(9-10), 1219.
67 Lao S C, Koo J H, Moon T J, et al. In: 2008 International Solid Freeform Fabrication Symposium. Austin, 2008, pp.55.
68 Tan L J Y, Zhu W, Zhou K. Powder Technology, 2020, 369, 25.
69 Yu C C, Ke Y C, Deng Q C, et al. Applied Sciences, 2018, 8(6), 964.
70 Tiwari S K, Pande S, Bobade S M, et al. Procedia Manufacturing, 2018, 21, 630.
71 Chung H, Das S. Materials Science and Engineering: A, 2008, 487(1-2), 251.
72 Warnakula A, Singamneni S. Materials, 2017, 10(8), 864.
73 Shishkovsky I, Scherbakov V, Morozov Y. Microelectronic Engineering, 2015, 146, 85.
74 Shishkovsky I V, Scherbakov V I, Saraeva I N, et al. Laser Physics Letters, 2017, 14(3), 035601.
75 Hupfeld T, Laumer T, Stichel T, et al. Procedia Cirp, 2018, 74, 244.
76 Hupfeld T, Salamon S, Landers J, et al. Journal of Materials Chemistry C, 2020, 8(35), 12204.
77 Hupfeld T, Sommereyns A, Schuffenhauer T, et al. Additive Manufacturing, 2020, 36, 101419.
78 Hassan M, Dave K, Chandrawati R, et al. European Polymer Journal, 2019, 121, 109340.
[1] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[2] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[3] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[4] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[5] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[6] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[7] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[8] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[9] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[10] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[13] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[14] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[15] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed