Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22060235-7    https://doi.org/10.11896/cldb.22060235
  高分子与聚合物基复合材料 |
不同SiC/ZnO含量对光敏树脂固化特性及力学性能的影响
宗学文1,*, 刘亮晶1,2, 田航1,3, 王涛1, 韦毅博1,2
1 西安科技大学机械工程学院,西安 710054
2 比亚迪汽车有限公司,西安 710075
3 隆基绿能科技股份有限公司,西安 710100
Effect of Different SiC/ZnO Contents on the Curing Characteristics and Mechanical Properties of Photosensitive Resin
ZONG Xuewen1,*, LIU Liangjing1,2, TIAN Hang1,3, WANG Tao1, WEI Yibo1,2
1 School of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
2 BYD Automobile Co., Ltd., Xi'an 710075, China
3 Longji Green Energy Technology Co., Ltd., Xi'an 710100, China
下载:  全 文 ( PDF ) ( 11947KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为评价无机微米、纳米及微-纳米粒子协同改性对光敏树脂的粘度、固化收缩特性及力学性能的影响,利用LCD光固化3D打印技术制备不同质量比的微-纳米SiC/ZnO改性光敏树脂。结果表明:在纳米ZnO和微米SiC填料的共同掺杂下,树脂的粘度随着填料质量比的增加而逐渐降低,能有效提高打印中的铺平能力;在相同的曝光能量下,结合Beer-Lambert光固化方程发现,与纳米ZnO/树脂体系相比,微-纳米SiC/ZnO/光敏树脂具有更高的固化深度,利于成形。当微米SiC与纳米ZnO的质量比为0.5∶2时,光敏树脂的固化收缩率、邵氏硬度、抗拉强度及断裂伸长率均达到最优,分别为0.39%、96.2、21.9 MPa和4.89%。本工作通过LCD光固化3D打印实现了微-纳米SiC/ZnO/树脂体系的制备,为未来微-纳协同改性光敏树脂制件的成型提供了一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宗学文
刘亮晶
田航
王涛
韦毅博
关键词:  光固化3D打印  微纳协同  复合材料  固化特性    
Abstract: To evaluate the effects of inorganic micron, nano and micro-nano particles synergistic modification on the viscosity, curing shrinkage characteristics and mechanical properties of photosensitive resin, micro-nano SiC/ZnO modified photosensitive resins with different mass ratios were prepared by LCD light-curing 3D printing technology. The results show that: under the co-doping of nano-ZnO and micron SiC fillers, the viscosity of the resin gradually decreases as the mass ratio of SiC fillers increases, which can effectively improve the spreading ability in printing; at the same exposure energy, combined with Beer-Lambert model equation, it is found that compared with the nano-ZnO/resin system, the micro-nano SiC/ZnO/photosensitive resin has higher curing depth, which facilitates forming. When the mass ratio of micron-SiC to nano-ZnO is 0.5∶2, the curing shrinkage, shore hardness, tensile strength and elongation at break of the photosensitive reach the optimal effect, which are 0.39%, 96.2, 21.9 MPa and 4.89% respectively. In this work, micro-nano SiC/ZnO/resin system were prepared by LCD light-curing 3D prin-ting, which provides a certain reference for the forming of micro-nano synergistic modified photosensitive resin fabrications in the future.
Key words:  UV-curing 3D printing    micro-nano synergy    composite    curing characteristics
发布日期:  2024-06-25
ZTFLH:  TB332  
基金资助: 陕西省秦创原“科学家+工程师”队伍建设(2022KXJ-012); 国家自然科学基金(51875452)
通讯作者:  *宗学文,博士,西安科技大学增材制造研究所所长、博士研究生导师。2008年西安交通大学快速制造技术研究方向博士毕业。主持国家重大专项子课题、国家自然科学基金、省重点研发、省地市人才等项目11项,开展高分子、陶瓷、金属复杂形体的增材制造关键技术、工艺装备与关键科学问题研究,成果应用于航空、航天、汽车、电子型产品的快速开发制造。完成特种玻璃、国家快速制造工程中心中试线建设项目。出版著作4部,发表中外期刊论文60多篇,获批专利30多项。目前主要从事光固化3D打印技术、金属增材制造技术、快速铸造技术等方面的教学科研及推广应用工作。zongw007@xust.edu.cn   
引用本文:    
宗学文, 刘亮晶, 田航, 王涛, 韦毅博. 不同SiC/ZnO含量对光敏树脂固化特性及力学性能的影响[J]. 材料导报, 2024, 38(11): 22060235-7.
ZONG Xuewen, LIU Liangjing, TIAN Hang, WANG Tao, WEI Yibo. Effect of Different SiC/ZnO Contents on the Curing Characteristics and Mechanical Properties of Photosensitive Resin. Materials Reports, 2024, 38(11): 22060235-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060235  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22060235
1 Quan H, Zhang T, Xu H, et al. Bioactive Materials, 2020, 5(1), 110.
2 Zong X W, Qu Y H, Wang X L. Rapid casting technology for complex parts by UV cured 3D printing, Huazhong University of Science and Technology Press, China, 2019, pp.5 (in Chinese).
宗学文, 屈银虎, 王小丽. 光固化3D打印复杂零件快速铸造技术, 华中科技大学出版社, 2019, pp.5.
3 Chen Z, Li Z, Li J, et al. European Ceramic Society, 2019, 39(4), 661.
4 Chen R, Lian Q, He X, et al. Journal of the European Ceramic Society, 2021, 41(7), 3991.
5 Dorieh A, Pour M F, Movahed S G, et al. Progress in Organic Coatings, 2022, 165, 106768.
6 Jin F L, Ma C L, Guo B T, et al. Bulletin of the Korean Chemical Society, 2019, 40(10), 991.
7 Lu I L, Liu T I, Lin H C, et al. Polymer Journal, 2020, 122, 109400.
8 Salarizadeh P, Javanbakht M, Pourmahdian S, et al. Journal of colloid and interface science, 2016, 472, 135.
9 Li X. Investigation of dielectric properties of micro-nano ZnO/LDPE compoosites with different shapes. Master's Thesis, Harbin University of Science and Technology, China, 2019 (in Chinese).
李霞. 不同形状微、纳米氧化锌/低密度聚乙烯复合材料介电性能研究. 硕士学位论文, 哈尔滨理工大学, 2019.
10 Han Y S, Song J, Zang X, et al. Acta Materiae Compositae Sinica, 2020, 37(7), 1562 (in Chinese).
韩永森, 孙健, 张昕, 等. 复合材料学报, 2020, 37(7), 1562.
11 Wan Y B, Lai J M, He P X, et al. Polymer Materials Science and Engineering, 2021, 37(6), 123 (in Chinese).
万义标, 赖家美, 何沛夕, 等. 高分子材料科学与工程, 2021, 37(6), 123.
12 Cheng X, Li W B, Chen S, et al. Polymer Materials Science and Engineering, 2020, 36(11), 86 (in Chinese).
程显, 李文博, 陈硕, 等. 高分子材料科学与工程, 2020, 36(11), 86.
13 Hu H, Zhang X, Zhang D, et al. Materials, 2019, 12(5), 761.
14 Nigrawal A, Buddi T, Rana R S, et al. Materials Today: Proceedings, 2019, 18, 4384.
15 Raju P, Raja K, Lingadurai K, et al. Biomass Conversion and Biorefi-nery, 2021, 1.
16 Zong X W, Liu L J, Ni M Y, et al. Engineering Plastics Application, 2021, 49(10), 61. (in Chinese).
宗学文, 刘亮晶, 倪铭佑, 等. 工程塑料应用, 2021, 49(10), 61.
17 Jaramillo A F, Baez-Cruz R, Montoya L F, et al. Ceramics International, 2017, 43(15), 11838.
18 Christopher G, Anbu Kulandainathan M, Harichandran G. Journal of Coatings Technology and Research, 2015, 12(4), 657.
19 Xu J, Chen M, Zhao Z, et al. Journal of Building Engineering, 2021, 38, 102208.
20 Chen X, Yin J, Liu X, et al. Polymers, 2021, 13(3), 463.
21 Nicolay A, Lanzutti A, Poelman M, et al. Applied surface science, 2015, 327, 379.
22 Hingorani H, Zhang Y F, Zhang B, et al. International Journal of Smart & Nano Materials, 2019, 10, 225.
23 Qing H. Study on laser 3D printing of silicon carbide. Master's Thesis, Harbin Institute of Technology, China, 2019 (in Chinese).
秦煌. 碳化硅陶瓷激光3D打印研究. 硕士学位论文, 哈尔滨工业大学, 2019.
24 Gentry S P, Halloran J W. Journal of the European Ceramic Society, 2015, 35, 1895.
25 Ding G, He R, Zhang K, et al. Journal of the American Ceramic Society, 2019, 102, 7198.
26 Zou D X. Nanofilier encapsulated microparticles for electrically insulating and thermally conductive epoxy composites. Master's Thesis, Shanghai Jiao Tong University, China, 2019 (in Chinese).
邹德晓. 微纳多级填料的制备与导热绝缘环氧复合材料的研究. 硕士学位论文, 上海交通大学, 2019.
27 Hu C, Chen Y, Yang T, et al. Ceramics International, 2021, 47, 12442.
28 Lee Y, Lee S, Zhao X G, et al. Smart Structures and Systems, 2018, 22(2), 161.
29 Liu C, Li M, Shen Q, et al. Materials, 2021, 14(7), 1731.
[1] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[6] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[7] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[8] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[9] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[10] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[11] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[12] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[13] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[14] 贾宝惠, 任鹏, 宋挺, 崔开心, 肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响[J]. 材料导报, 2024, 38(5): 22100282-7.
[15] 张倩玮, 陈意高, 崔红, 吴小军. SiC-ZrC复相超高温陶瓷改性C/C复合材料的研究进展[J]. 材料导报, 2024, 38(3): 22060154-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed