Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (14): 2396-2399    https://doi.org/10.11896/j.issn.1005-023X.2018.14.013
  无机非金属及其复合材料 |
钢-聚丙烯混杂纤维混凝土的抗盐冻性能
张广泰, 田虎学, 李宝元, 张继飞, 王玉喜
新疆大学建筑工程学院,乌鲁木齐 830047
Deicer-Frost Scaling of Steel-polypropylene Hybrid Fiber Reinforced Concrete
ZHANG Guangtai, TIAN Huxue, LI Baoyuan, ZHANG Jifei, WANG Yuxi
Civil Construction College, Xinjiang University, Urumqi 830047
下载:  全 文 ( PDF ) ( 1773KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了盐冻循环作用对锂渣混凝土(LiC)和钢-聚丙烯混杂纤维锂渣混凝土(HFC)的质量损失、抗压强度、动弹性模量、基振频率以及溶液吸入量的影响。结果表明:随盐冻循环次数的增加,LiC和HFC均呈现质量损失率逐渐增大、抗压强度先增加后减小、动弹性模量前期稳定后期逐渐减小、溶液吸入量(Ws)先减小后增加的变化规律。将二者对比可以发现,钢-聚丙烯混杂纤维掺入混凝土可以减小盐冻作用对混凝土的内部损伤,显著提高混凝土的抗盐冻性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张广泰
田虎学
李宝元
张继飞
王玉喜
关键词:  钢-聚丙烯混杂纤维  盐冻  抗压强度  溶液吸入量  动弹性模量  质量损失    
Abstract: Effects of deicer-frost on the mass loss, compressive strength, the dynamic elastic modulus, base frequency and the solution absorption of lithium slag concrete and steel-polypropylene hybrid fiber reinforced concrete were investigated under freezing thawing cycles. With the increase of the number of salt-freezing cycles, both LiC and HFC showed that the mass loss rate increased, the compressive strength first increased and then decreased, the early stability of dynamic elastic modulus decreased gradually, and the variation of solution absorption first decreased and then increased. The comparison can show that the steel-polypropylene hybrid fiber can reduce the internal damage of concrete in deicer-frost condition and improve the freezing thawing-resistant performance of concrete.
Key words:  steel-polypropylene hybrid fiber reinforced concrete    deicer-frost    compressive strength    solution absorption    dynamic elastic    mass loss
               出版日期:  2018-07-25      发布日期:  2018-07-31
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51568064);新疆维吾尔自治区自然科学基金(2014211A006)
作者简介:  张广泰:男,1963年生,教授,硕士研究生导师,主要研究方向为新型建筑材料、减震隔震 E-mail:zgtlxh@126.com
引用本文:    
张广泰, 田虎学, 李宝元, 张继飞, 王玉喜. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 《材料导报》期刊社, 2018, 32(14): 2396-2399.
ZHANG Guangtai, TIAN Huxue, LI Baoyuan, ZHANG Jifei, WANG Yuxi. Deicer-Frost Scaling of Steel-polypropylene Hybrid Fiber Reinforced Concrete. Materials Reports, 2018, 32(14): 2396-2399.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.14.013  或          http://www.mater-rep.com/CN/Y2018/V32/I14/2396
1 Neves R, Vicente C, Castela A, et al. Durability performance of concrete incorporating spent fluid cracking catalyst[J]. Cement and Concrete Composites,2015,55:308.
2 徐金余,赵德辉,范飞林. 纤维混凝土的动力特性[M].西安:西北工业大学出版社,2013.
3 Li Y, Zhang G T, Tian H X, et al. Basic mechanical properties experiment on lithium slag polypropylene fiber reinforced concrete[J]. Journal of Henan University of Science and Technology (Natural Science),2016,37(4):60(in Chinese).
李一,张广泰,田虎学,等.锂渣聚丙烯纤维混凝土基本力学性能试验[J].河南科技大学学报(自然科学版),2016,37(4):60.
4 Tian H X, Zhang G T, Li Y, et al. Experimental on compression of polypropylene fiber lithium slag concrete under the environment of alkali and dry-wet circulation[J]. Concrete,2016(12):97(in Chinese).
田虎学,张广泰,李一,等,聚丙烯纤维锂渣混凝土在强碱与干湿循环耦合作用下抗压试验研究[J].混凝土,2016(12):97.
5 Niu D T, Jiang L, Bai M. Experimental analysis on the frost resis-tance of steel fiber reinforced concrete[J]. Journal of Civil Architectural & Environmental Engineering,2012,34(4):80(in Chinese).
牛荻涛,姜磊,白敏.钢纤维混凝土抗冻性能试验研究[J].土木建筑与环境工程,2012,34(4):80.
6 李艺,赵文.混杂纤维混凝土阻裂增韧及耐久性能[M].北京:科学出版社,2012.
7 Setzer M J, Heine P, Kasparek S, et al. Test methods of frost resistance of concrete: CIF-test-capillary suction, internal damage and freeze thaw test[J]. Materials and Structures,2004,37,743.
8 Yang Q B. Effects of NaCl concentration on ice-formation expansion and the solution absorption by concrete[J]. Journal of Building Materials,2007,10(3):266(in Chinese).
杨全兵.NaCl对结冰膨胀率和混凝土溶液吸入量的影响[J].建筑材料学报,2007,10(3):266.
[1] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[2] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[3] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[4] 胡明玉, 付超, 魏丽丽, 刘章君. 等钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J]. 《材料导报》期刊社, 2018, 32(8): 1230-1235.
[5] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[6] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[7] 王建祥,唐新军,何建新,张凌凯. 考虑多因素的浇筑式沥青混凝土动力特性研究[J]. 《材料导报》期刊社, 2018, 32(12): 2085-2090.
[8] 崔亚楠,于庆年,韩吉伟,陈超. 复杂气候条件下胶粉改性沥青的低温性能[J]. 《材料导报》期刊社, 2018, 32(12): 2078-2084.
[9] 姜玉丹,金祖权,陈永丰,范君峰. 高吸水树脂对混凝土水化及强度的影响[J]. 《材料导报》期刊社, 2017, 31(24): 40-44.
[10] 方 圆,陈 兵. 玻璃纤维对磷酸镁水泥砂浆力学性能的增强作用及机理[J]. 《材料导报》期刊社, 2017, 31(24): 6-9.
[11] 秦晓川, 孟少平, 涂永明. 高强混凝土材料细观冻融损伤与抗压强度的关系*[J]. 《材料导报》期刊社, 2017, 31(2): 117-120.
[12] 漆小鹏, 李文, 罗远方, 杨辉. 新型钇-羟基磷灰石骨水泥的制备及性能研究*[J]. CLDB, 2017, 31(13): 151-155.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed