Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 40-44    https://doi.org/10.11896/j.issn.1005-023X.2017.024.009
  第一届先进胶凝材料研究与应用学术会议 |
高吸水树脂对混凝土水化及强度的影响
姜玉丹,金祖权,陈永丰,范君峰
青岛理工大学土木工程学院,青岛 266033
Effect of Super-absorbent Polymer on Hydration and Compressive Strength of Concrete
JIANG Yudan,JIN Zuquan, CHEN Yongfeng, FAN Junfeng
School of Civil Engineering,Qingdao University of Technology, Qingdao 266033
下载:  全 文 ( PDF ) ( 1531KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高吸水树脂(Super-absorbent polymer,SAP)作为混凝土内养护材料可有效抑制混凝土自收缩,提高混凝土抗裂性,但其对混凝土是否具有负面影响有待研究。利用XRD和DTA-TG研究了不同SAP掺量净浆在不同养护龄期的水化产物量,并测试其抗压强度,定量分析高吸水树脂对混凝土水化和强度的影响。实验结果表明:掺加SAP会延缓混凝土早期(0~7 d)的水化反应,降低混凝土的抗压强度,但对混凝土中后期(7~28 d)水化的进行及强度发展的影响不大。当高吸水树脂的掺量为1 kg/m3(占胶凝材料的质量分数为0.2%)和1.5 kg/m3(占胶凝材料的质量分数为0.3%)时,混凝土28 d抗压强度可达基准组的100%和96%,56 d抗压强度可达基准组的107%和96%。针对C50混凝土,推荐掺量为1 kg/m3
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜玉丹
金祖权
陈永丰
范君峰
关键词:  高吸水树脂  内养护  混凝土  水化  抗压强度    
Abstract: Super absorbent polymer (SAP) as a kind of internal curing materials can effectively inhibit the autogenous shrinkage and prevent crack formation. However, it remains to be studied whether SAP has a negative impact on concrete. In this paper, the hydration products of paste incorporated by different content of SAP were studied by XRD and DTA-TG, and mechanical properties were tested after standard curing to the different ages. The influence of SAP on hydration and compressive strength of concrete was studied quantificationally. Results indicated that SAP could delay the early hydration on concrete (0—7 d) and the compressive strength of concrete decreased as well. After 7 days curing, the influence of SAP on hydration and compressive strength of concrete was negligible. When the addition of SAP was 1 kg/m3 (the mass percentage of super absorbent polymer in cementitious material was 0.2%) and 1.5 kg/m3 (the mass percentage of super absorbent polymer in cementitious material was 0.3%), the compressive strength of concrete with SAP was 100% and 96% of the concrete without SAP at the age of 28 days. After 56 days curing, the compressive strength of concrete with SAP was 107% and 96% of the concrete without SAP. For C50 concrete, the recommended content of SAP is 1 kg/m3.
Key words:  super-absorbent polymer    internal curing    concrete    hydration    compressive strength
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TU528.31  
基金资助: 国家自然科学基金(51378269;51678318);铁道部工程计划项目(2014G004-F)
通讯作者:  金祖权:男,1977年生,博士,教授,博士研究生导师,研究方向为高性能混凝土制备及性能 E-mail:jinzuquan@126.com   
作者简介:  姜玉丹:女,1981年生,博士研究生,研究方向为海洋环境下混凝土耐久性 E-mail:jyd1981@163.com
引用本文:    
姜玉丹,金祖权,陈永丰,范君峰. 高吸水树脂对混凝土水化及强度的影响[J]. 《材料导报》期刊社, 2017, 31(24): 40-44.
JIANG Yudan,JIN Zuquan, CHEN Yongfeng, FAN Junfeng. Effect of Super-absorbent Polymer on Hydration and Compressive Strength of Concrete. Materials Reports, 2017, 31(24): 40-44.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.009  或          https://www.mater-rep.com/CN/Y2017/V31/I24/40
1 Mezencevova A, Garas V, Nanko H, et al. Influence of thermomechanical pulp fiber compositions on internal curing of cementitious materials[J]. J Mater Civil Eng, 2012,24(8):970.
2 Hou Dongwei, Zhang Jun, Sun Wei. Determination of concrete setting time based on measurements of deformation[J].J Chin Ceram Soc, 2009,37(7):1079(in Chinese).
侯东伟,张君,孙伟.基于早期变形特征的混凝土凝结时间的确定[J].硅酸盐学报,2009,37(7):1079.
3 Zhao Wenjie, Zhang Huixuan, Zhang Baoyan. Properties of PB-g-PSG latex-modified cement mortars[J]. J Building Mater, 2010,13(4):497(in Chinese).
赵文杰,张会轩,张宝砚.PB-g-PSG胶乳改性水泥砂浆性能[J].建筑材料学报,2010,13(4):497.
4 Ding Hongyan, Zhang Lei, Zhang Puyang. Factors influencing strength of super absorbent polymer(SAP) concrete[J]. Trans Tianjin University, 2017,23(3):245.
5 Brüdern A E, Mechtcherine V. Multifunctional use of SAP in strain-hardening cement-based composites[C]∥RILEM Publications SARL. Denmark, 2010:11.
6 Schrfl C, Mechtcherine V, Gorges M. Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage[J]. Cem Concr Res, 2012,42(6):865.
7 Yao Y, Zhu Y, Yang Y. Incorporation superabsorbent polymer (SAP) particles as controlling pre-existing flaws to improve the performance of engineered cementitious composites (ECC)[J]. Constr Building Mater, 2012,28(1):139.
8 Dudziak L, Mechtcherine V. Enhancing early-age resistance to cracking in high-strength cement-based materials by means of internal curing using super absorbent polymers[J]. Additions Improving Properties Concr, 2010,77:129.
9 Kim J S, Schlangen E.Super absorbent polymers to simulate self healing in ECC[C]∥van Breugel K,Ye G,Yuan Y.2nd International Symposium on Service Life Design for Infrastructure. Delft, 2010:849.
10Bian Xia, Wang Zhifeng, Ding Guoquan, et al. Compressibility of cemented dredged clay at high water content with super-absorbent polymer[J]. Eng Geol, 2016,208:198.
11Lura P, Durand F, Loukili A, et al. Compressive strength of cement pastes and mortars with superabsorbent polymers[C]∥Proceedings of the International RILEM Conference. Denmark, 2006:117.
12Esteves L P. Internal curing in cement-based materials[D]. Portugal: Aveiro University, 2009.
13Pang Lufeng, Ruan Shiye, Cai Yongtao. Effects of internal curing by super absorbent polymer on shrinkage of concrete[J]. Key Eng Mater, 2011,477:200.
14Gaston Espinoza-Hijazin, Mauricio Lopez. Extending internal curing to concrete mixtures with W/C higher than 0.42[J]. Constr Building Mater,2011,25(3):1236.
15Mehta P K, Monteiro P J M. Concrete: Microstructure,properties and materials[M].3rd ed. Mc Graw-Hill, 2006:105.16Piérard J,Pollet V,Cauberg N. Mitigation of autogenous shrinkage in HPC by internal curing using superabsorbent polymers[C]∥International RILEM Conference Onchanges of Hardening Concrete: Testing & Mitigation. Denmark, 2006.
17Jensen O M,Lura P,Kovler K. Volume changes of hardening concrete: Testing and mitigation[C]∥Proceedings of the International RILEM Conference. Denmark, 2006.
18Ma Xinwei, Li Xueying, Jiao Hejun. Experimental research on utilization of super absorbent polymer in cement mortar and concrete[J]. J Wuhan Univ Tech, 2009,31(2):33(in Chinese).
马新伟,李学英,焦贺军.超强吸水聚合物在砂浆与混凝土中的应用研究[J].武汉理工大学学报,2009,31(2):33.
19Wang Kunyan, Cen Rufeng, Shu Wenwen. Preparation and performance of super-absorbent resin using polyacrylonitrile fiber wastes[J]. Adv Mater Res, 2015,1120:498.
20Li Xiangtao. The release and hydration rules of water in water slurry in high absorbent resin base[J]. China Concr Cem Products, 2017,7:1.
[1] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[2] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[3] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[4] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[5] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[8] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[9] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[10] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[11] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[12] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[13] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[14] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[15] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed