Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 40-44    https://doi.org/10.11896/j.issn.1005-023X.2017.024.009
  第一届先进胶凝材料研究与应用学术会议 |
高吸水树脂对混凝土水化及强度的影响
姜玉丹,金祖权,陈永丰,范君峰
青岛理工大学土木工程学院,青岛 266033
Effect of Super-absorbent Polymer on Hydration and Compressive Strength of Concrete
JIANG Yudan,JIN Zuquan, CHEN Yongfeng, FAN Junfeng
School of Civil Engineering,Qingdao University of Technology, Qingdao 266033
下载:  全 文 ( PDF ) ( 1531KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高吸水树脂(Super-absorbent polymer,SAP)作为混凝土内养护材料可有效抑制混凝土自收缩,提高混凝土抗裂性,但其对混凝土是否具有负面影响有待研究。利用XRD和DTA-TG研究了不同SAP掺量净浆在不同养护龄期的水化产物量,并测试其抗压强度,定量分析高吸水树脂对混凝土水化和强度的影响。实验结果表明:掺加SAP会延缓混凝土早期(0~7 d)的水化反应,降低混凝土的抗压强度,但对混凝土中后期(7~28 d)水化的进行及强度发展的影响不大。当高吸水树脂的掺量为1 kg/m3(占胶凝材料的质量分数为0.2%)和1.5 kg/m3(占胶凝材料的质量分数为0.3%)时,混凝土28 d抗压强度可达基准组的100%和96%,56 d抗压强度可达基准组的107%和96%。针对C50混凝土,推荐掺量为1 kg/m3
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜玉丹
金祖权
陈永丰
范君峰
关键词:  高吸水树脂  内养护  混凝土  水化  抗压强度    
Abstract: Super absorbent polymer (SAP) as a kind of internal curing materials can effectively inhibit the autogenous shrinkage and prevent crack formation. However, it remains to be studied whether SAP has a negative impact on concrete. In this paper, the hydration products of paste incorporated by different content of SAP were studied by XRD and DTA-TG, and mechanical properties were tested after standard curing to the different ages. The influence of SAP on hydration and compressive strength of concrete was studied quantificationally. Results indicated that SAP could delay the early hydration on concrete (0—7 d) and the compressive strength of concrete decreased as well. After 7 days curing, the influence of SAP on hydration and compressive strength of concrete was negligible. When the addition of SAP was 1 kg/m3 (the mass percentage of super absorbent polymer in cementitious material was 0.2%) and 1.5 kg/m3 (the mass percentage of super absorbent polymer in cementitious material was 0.3%), the compressive strength of concrete with SAP was 100% and 96% of the concrete without SAP at the age of 28 days. After 56 days curing, the compressive strength of concrete with SAP was 107% and 96% of the concrete without SAP. For C50 concrete, the recommended content of SAP is 1 kg/m3.
Key words:  super-absorbent polymer    internal curing    concrete    hydration    compressive strength
               出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TU528.31  
基金资助: 国家自然科学基金(51378269;51678318);铁道部工程计划项目(2014G004-F)
通讯作者:  金祖权:男,1977年生,博士,教授,博士研究生导师,研究方向为高性能混凝土制备及性能 E-mail:jinzuquan@126.com   
作者简介:  姜玉丹:女,1981年生,博士研究生,研究方向为海洋环境下混凝土耐久性 E-mail:jyd1981@163.com
引用本文:    
姜玉丹,金祖权,陈永丰,范君峰. 高吸水树脂对混凝土水化及强度的影响[J]. 《材料导报》期刊社, 2017, 31(24): 40-44.
JIANG Yudan,JIN Zuquan, CHEN Yongfeng, FAN Junfeng. Effect of Super-absorbent Polymer on Hydration and Compressive Strength of Concrete. Materials Reports, 2017, 31(24): 40-44.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.009  或          http://www.mater-rep.com/CN/Y2017/V31/I24/40
1 Mezencevova A, Garas V, Nanko H, et al. Influence of thermomechanical pulp fiber compositions on internal curing of cementitious materials[J]. J Mater Civil Eng, 2012,24(8):970.
2 Hou Dongwei, Zhang Jun, Sun Wei. Determination of concrete setting time based on measurements of deformation[J].J Chin Ceram Soc, 2009,37(7):1079(in Chinese).
侯东伟,张君,孙伟.基于早期变形特征的混凝土凝结时间的确定[J].硅酸盐学报,2009,37(7):1079.
3 Zhao Wenjie, Zhang Huixuan, Zhang Baoyan. Properties of PB-g-PSG latex-modified cement mortars[J]. J Building Mater, 2010,13(4):497(in Chinese).
赵文杰,张会轩,张宝砚.PB-g-PSG胶乳改性水泥砂浆性能[J].建筑材料学报,2010,13(4):497.
4 Ding Hongyan, Zhang Lei, Zhang Puyang. Factors influencing strength of super absorbent polymer(SAP) concrete[J]. Trans Tianjin University, 2017,23(3):245.
5 Brüdern A E, Mechtcherine V. Multifunctional use of SAP in strain-hardening cement-based composites[C]∥RILEM Publications SARL. Denmark, 2010:11.
6 Schrfl C, Mechtcherine V, Gorges M. Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage[J]. Cem Concr Res, 2012,42(6):865.
7 Yao Y, Zhu Y, Yang Y. Incorporation superabsorbent polymer (SAP) particles as controlling pre-existing flaws to improve the performance of engineered cementitious composites (ECC)[J]. Constr Building Mater, 2012,28(1):139.
8 Dudziak L, Mechtcherine V. Enhancing early-age resistance to cracking in high-strength cement-based materials by means of internal curing using super absorbent polymers[J]. Additions Improving Properties Concr, 2010,77:129.
9 Kim J S, Schlangen E.Super absorbent polymers to simulate self healing in ECC[C]∥van Breugel K,Ye G,Yuan Y.2nd International Symposium on Service Life Design for Infrastructure. Delft, 2010:849.
10Bian Xia, Wang Zhifeng, Ding Guoquan, et al. Compressibility of cemented dredged clay at high water content with super-absorbent polymer[J]. Eng Geol, 2016,208:198.
11Lura P, Durand F, Loukili A, et al. Compressive strength of cement pastes and mortars with superabsorbent polymers[C]∥Proceedings of the International RILEM Conference. Denmark, 2006:117.
12Esteves L P. Internal curing in cement-based materials[D]. Portugal: Aveiro University, 2009.
13Pang Lufeng, Ruan Shiye, Cai Yongtao. Effects of internal curing by super absorbent polymer on shrinkage of concrete[J]. Key Eng Mater, 2011,477:200.
14Gaston Espinoza-Hijazin, Mauricio Lopez. Extending internal curing to concrete mixtures with W/C higher than 0.42[J]. Constr Building Mater,2011,25(3):1236.
15Mehta P K, Monteiro P J M. Concrete: Microstructure,properties and materials[M].3rd ed. Mc Graw-Hill, 2006:105.16Piérard J,Pollet V,Cauberg N. Mitigation of autogenous shrinkage in HPC by internal curing using superabsorbent polymers[C]∥International RILEM Conference Onchanges of Hardening Concrete: Testing & Mitigation. Denmark, 2006.
17Jensen O M,Lura P,Kovler K. Volume changes of hardening concrete: Testing and mitigation[C]∥Proceedings of the International RILEM Conference. Denmark, 2006.
18Ma Xinwei, Li Xueying, Jiao Hejun. Experimental research on utilization of super absorbent polymer in cement mortar and concrete[J]. J Wuhan Univ Tech, 2009,31(2):33(in Chinese).
马新伟,李学英,焦贺军.超强吸水聚合物在砂浆与混凝土中的应用研究[J].武汉理工大学学报,2009,31(2):33.
19Wang Kunyan, Cen Rufeng, Shu Wenwen. Preparation and performance of super-absorbent resin using polyacrylonitrile fiber wastes[J]. Adv Mater Res, 2015,1120:498.
20Li Xiangtao. The release and hydration rules of water in water slurry in high absorbent resin base[J]. China Concr Cem Products, 2017,7:1.
[1] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[2] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[3] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[4] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[5] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[6] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[7] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[8] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[9] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[10] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[11] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[12] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[13] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[14] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[15] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed