Please wait a minute...
CLDB  2017, Vol. 31 Issue (13): 151-155    https://doi.org/10.11896/j.issn.1005-023X.2017.013.020
  生物医用材料 |
新型钇-羟基磷灰石骨水泥的制备及性能研究*
漆小鹏, 李文, 罗远方, 杨辉
江西理工大学材料科学与工程学院,赣州 341000
Preparation and Properties of a Novel Yttrium-hydroxyapatite Cement
QI Xiaopeng, LI Wen, LUO Yuanfang,YANG Hui
School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000
下载:  全 文 ( PDF ) ( 1819KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用高温固相法合成了掺钇的磷酸四钙,将其与无水磷酸氢钙以物质的量比1∶1混合制备了钇-羟基磷灰石骨水泥(Y-HAC)。结果表明:少量钇的掺入不会改变骨水泥的水化产物,骨水泥能正常水化,水化产物为弱结晶羟基磷灰石。与纯羟基磷灰石骨水泥(HAC)相比,Y-HAC的湿态抗压强度提高了120%,干态抗压强度提高了85%。同时,钇的掺入还提高了材料的孔隙率。Y-HAC的微观结构呈现紧密结合的片状羟基磷灰石结晶体。体外释放实验表明,钇的释放量极低,说明钇-羟基磷灰石骨水泥具有较好的稳定性。Y-HAC是一种很有前途的骨组织修复材料,并可用于载药材料和骨组织工程支架材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
漆小鹏
李文
罗远方
杨辉
关键词:    羟基磷灰石骨水泥  抗压强度  骨修复    
Abstract: The tetracalcium phosphate (TTCP) doped with yttrium was prepared by high temperature solid state method. Then the TTCP doped with yttrium was mixed with dicalcium phosphate anhydrous (DCPA) at a molar ratio of 1∶1 to form ytt-rium-hydroxyapatite cement (Y-HAC). The results showed that the reaction product of Y-HAC is poorly crystalline hydroxyapatite, indicating that the addition of small amount of yttrium has not changed the hydration reaction of hydroxyapatite cement (HAC). The wet compressive strength of Y-HAC increased 120% and dry compressive strength increased 85%, compared with that of HAC. The porosity of specimens has been augmented with the doping of yttrium. There exists some changes in crystallization morphology of Y-HAC, emerging many closely combined flaked crystals and construct a three-dimensional network structure. The in-vitro release experiment indicated that Y-HACs have very low release of yttrium. The Y-HAC might be a potential material for bone substitute, drug-loaded and bone tissue engineering.
Key words:  yttrium    hydroxyapatite cement    compressive strength    bone repair
出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  R318.08  
基金资助: * 江西理工大学科研基金重点课题(NSFJ2014-K10)
作者简介:  漆小鹏:男,1977年生,博士,副教授,硕士研究生导师,研究方向为生物医用材料 E-mail:81714680@qq.com
引用本文:    
漆小鹏, 李文, 罗远方, 杨辉. 新型钇-羟基磷灰石骨水泥的制备及性能研究*[J]. CLDB, 2017, 31(13): 151-155.
QI Xiaopeng, LI Wen, LUO Yuanfang, YANG Hui. Preparation and Properties of a Novel Yttrium-hydroxyapatite Cement. Materials Reports, 2017, 31(13): 151-155.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.020  或          https://www.mater-rep.com/CN/Y2017/V31/I13/151
1 Besta S M, Porterb A E, Thiana E S, et al. Bioceramics: Past, present and for the future[J]. J Eur Ceram Soc,2008,28:1319.
2 Xiang N, Zhang X M, Tian L Y, et al. Research progress of rare earths and related compounds in biological medicine[J]. J Biolog, 2009,26(4):65(in Chinese).
项楠,张雪梅,田莉瑛,等. 稀土及其配合物在生物医药上的研究进展[J]. 生物学杂志,2009,26(4):65.
3 Liu Q, Mo A C. Effect of yttrium/hydroxyapatite nanoparticles on the biological behavior of human periodontal ligament cells[J]. Chin J Conserv Dent,2008,18(3):139(in Chinese).
刘泉,莫安春. 钇-羟基磷灰石纳米微粒对人牙周膜细胞生物学行为的影响[J]. 牙体牙髓牙周病学杂志,2008,18(3):139.
4 Ergun C, Webster T J, Bizios R, et al.Hydroxyapatite with substituted magnesium, zinc, cadmium and yttrium. I. Structure and microstructure[J]. J Biomed Mater Res,2002,59(1):305.
5 Webster T J, Ergun C, et al. Hydroxyapatite with substituted magnesium, zinc, cadmium, and yttrium.Ⅱ.Mechanisms of osteoblast adhesion[J].J Biomed Mater Res,2002,59(2):3l2.
6 Sato M, Sambito M A, Aslani A, et al. Increased osteoblast funcfions on undoped and yttrium doped nanocrystalline hydroxyapatite coatings on titanium[J]. Biomaterials,2006,27(11):2358.
7 Bai S, Mo A C, Chen Z Q, et al. Synthesis and characterization of yttrium/hydroxyapatite nanocrystals[J]. Chin J Oral Implantol,2006,11(1):1(in Chinese).
白石, 莫安春, 陈治清,等. 钇/羟基磷灰石复合纳米晶体微粒的制备及性能[J]. 中国口腔种植学杂志,2006,11(1):1.
8 Toker S M, Tezcaner A, Evis Z. Microstructure, microhardness, and biocompatibility characteristics of yttrium hydroxyapatite doped with fluoride[J]. J Biomed Mater Res Part B: Appl Biomater,2011,96:207.
9 Basar B, Tezcaner A, Keskin D,et al. Improvements in microstructural, mechanical, and biocompatibility properties of nano-sized hydroxyapatites doped with yttrium and fluoride[J]. Ceram Int,2010,36:1633.
10 Qi X P. Preparation of poly(lactie-co-glycolic acid)/calcium phosphate cement macroporous composite scaffold[J]. Acta Mater Compos Sin,2010,27(3):73(in Chinese).
漆小鹏. 聚乳酸-羟基乙酸共聚物/磷酸钙骨水泥多孔复合支架的制备[J]. 复合材料学报,2010,27(3):73.
11 van den Vreken N M F, Pieters I Y, Declercq H A, et al. Characterization of calcium phosphate cements modified by addition of amorphous calcium phosphate[J]. Acta Biomater,2010,6(2):617.
12 Constanz B R, Ison I C, Fulmer M T, et al. Skeletal repair by in situ formation of the mineral phase of bone [J]. Science,1995,267: 1796.
[1] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[2] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[3] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[4] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[5] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[6] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[7] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[8] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[9] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[10] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[11] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[12] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[13] 叶登建, 代波. 放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能[J]. 材料导报, 2024, 38(4): 22070054-5.
[14] 陈晓光, 赵文升, 吉祥龙, 王剑云. 透水混凝土的历史、现状与高性能化展望[J]. 材料导报, 2024, 38(24): 23100172-9.
[15] 宋茂林, 张朝阳, 张尚枫, 侯晓伟, 石礼岗, 于斌, 罗宇维, 孔祥明. 超临界CO2环境下磷酸盐改性铝酸盐水泥性能变化[J]. 材料导报, 2024, 38(24): 23090114-4.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed