Please wait a minute...
CLDB  2017, Vol. 31 Issue (13): 156-159    https://doi.org/10.11896/j.issn.1005-023X.2017.013.021
  生物医用材料 |
钛合金表面微粗糙化对成骨细胞黏附及增殖行为的影响*
黄润1, 王庆平1, 张兰2, 陈向阳3, 胡东4
1 安徽理工大学材料科学与工程学院,淮南232001;
2 西安交通大学金属材料强度国家重点实验室,西安710049;
3 安徽理工大学机械工程学院,淮南232001;
4 安徽理工大学医学检验中心,淮南 232001
Effect of Surface Microroughening of Titanium Alloy on Osteoblast Adhesion and Proliferation Behavior
HUANG Run1,WANG Qingping1,ZHANG Lan2,CHEN Xiangyang3,HU Dong4
1 School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001;
2 State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049;
3 School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001;
4 Medical Inspection Center, Anhui University of Science and Technology, Huainan 232001
下载:  全 文 ( PDF ) ( 1395KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用表面机械研磨(SMAT)法对Ti-25Nb-3Mo-3Zr-2Sn(TLM)钛合金处理15 min,而后将处理前后的钛合金样品与成骨细胞共培养1 h、24 h。采用X射线衍射(XRD)、光学显微镜(OM)、透射电镜(TEM)、扫描电镜(SEM)、电子能谱(EDX)及激光共聚焦显微镜(CLSM)对处理前后样品表面的结构进行了分析,结果显示SMAT处理不会改变TLM钛合金的物相、晶粒尺度及化学组成,处理前后物相均由单一的β相组成,晶粒尺寸均在10~20 μm且没有引入新的杂质元素,但SMAT处理会改变TLM钛合金的表面粗糙度,处理前的样品表面平整,平均粗糙度Ra为(0.2±0.03) μm,而处理后的样品表面坑洼不平,平均粗糙度Ra增至(2.6±0.4) μm。随后的细胞实验结果显示,对比SMAT处理前,成骨细胞在处理后的微粗糙表面铺展得更为充分,增殖得更加迅速。研究表明,SMAT处理可以改善TLM钛合金表面的成骨细胞生长环境,从而为开发出更符合临床应用的钛金属种植体提供新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄润
王庆平
张兰
陈向阳
胡东
关键词:  钛合金  微粗糙化  成骨细胞  黏附  增殖    
Abstract: Ti-25Nb-3Mo-3Zr-2Sn (TLM) titanium alloy was treated via surface mechanical attrition treatment (SMAT) for 15 min in this paper, after which the treated and untreated titanium alloy samples were respectively cultured with osteoblast cells for 1 h and 24 h. XRD, OM, TEM, SEM, EDX and CLSM were adopted to analyze the structure of the samples, and the obtained results revealed that SMAT process did not alter the phase composition, grain size and chemical composition of TLM alloy. Both the treated and untreated titanium alloys were composed of the same solely β phase, in the same grain size of about 10—20 μm and without newly-brought impurity elements. However, this treatment would alter the surface roughness of TLM alloy. The untreated sample possessed a smooth surface with a roughness value Ra of about (0.2±0.03) μm, whereas the treated surface owed an uneven surface with a roughness value Ra of about (2.6±0.4) μm. The subsequent cellular experiment showed that the seeded osteoblasts on SMAT-treated surface spread much wider and proliferated more rapidly compared with the untreated surface. Our study suggests that SMAT could improve the living condition of osteoblast on TLM alloy surface, thus providing a promising means for the design of more potential biomedical titanium implants used on clinic.
Key words:  titanium alloy    microroughening    osteoblast    adhesion    proliferation
出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TB34  
基金资助: *国家自然科学基金(81501598);西安交通大学金属材料强度国家重点实验室开放研究项目(20161805);安徽理工大学引进人才科研启动基金(ZY533)
作者简介:  黄润:男,1983年生,博士,讲师,主要研究方向为金属材料表面生物医用改性 E-mail:huang.run@stu.xjtu.edu.cn
引用本文:    
黄润, 王庆平, 张兰, 陈向阳, 胡东. 钛合金表面微粗糙化对成骨细胞黏附及增殖行为的影响*[J]. CLDB, 2017, 31(13): 156-159.
HUANG Run, WANG Qingping, ZHANG Lan, CHEN Xiangyang, HU Dong. Effect of Surface Microroughening of Titanium Alloy on Osteoblast Adhesion and Proliferation Behavior. Materials Reports, 2017, 31(13): 156-159.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.021  或          https://www.mater-rep.com/CN/Y2017/V31/I13/156
1 Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Prog Mater Sci,2009,54:397.
2 Ratner B D, Bryant S J. Biomaterials: Where we have been and where we are going[J]. Annu Rev Biomed Eng,2004,6:41.
3 Alm J J, Moritz N, Aro H T. In vitro osteogenic capacity of bone marrow MSCs from postmenopausal women reflect the osseointegration of their cementless hip stems[J]. Bone Rep,2016,5:124.
4 Pilliar R M. Powder metal-made orthopedic implants with porous surface for fixation by tissue ingrowth[J]. Clin Orthop Relat Res,1983,176:42.
5 Challa V S A, Mali S, Misra R D K. Reduced toxicity and superior cellular response of preosteoblasts to Ti-6Al-7Nb alloy and comparison with Ti-6Al-4V[J]. J Biomed Mater Res A, 2013,101:2083.
6 Liu J, Wang X D, Jin Q M, et al. The stimulation of adipose-derived stem cell differentiation and mineralization by ordered rod-like fluorapatite coatings[J]. Biomaterials,2012,33:5036.
7 Huang R, Han Y, Lu S M. Enhanced osteoblast functions and bactericidal effect of Ca and Ag dual-ion implanted surface layers on nanograined titanium alloy[J]. J Mater Chem B,2014, 2:4531.
8 Yu Z T, Zhou L. Influence of martensitic transformation on mecha-nical compatibility of biomedical β type titanium alloy TLM[J]. Mater Sci Eng A,2006,438-440:391.
9 Anselme. Osteoblast adhesion on biomaterials[J]. Biomaterials,2000,21:667.
10 Huang R, Lu S M, Han Y. Role of grain size in the regulation of osteoblast response to Ti-25Nb-3Mo-3Zr-2Sn alloy[J]. Colloids Surf B: Biointerfaces,2013,111:232.
11 Boyan B D, Sylvia V L, Liu Y H, et al. Surface roughness mediates its effects on osteoblasts via protein kinase A and phospholipase A2[J]. Biomaterials,1999,20:2305.
12 Martin J Y, Schwartz Z, Hijmmert W, et al. Bone healing after bone marrow stromal cell transplantation to the bone defect[J]. Biomaterials,1993,14(1):115.
13 Wu Y, Zitelli J P, Tenhuisen K S, et al. Differential response of Staphylococci and osteoblasts to varying titanium surface roughness[J]. Biomaterials,2011,32:951.
[1] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[2] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[3] 焦纪强, 蒙峻, 谢文君, 刘建龙, 魏宁斐, 罗成, 郭方准, 王润成. 超高真空环境下TC4钛合金和ZrO2陶瓷的出气性能研究[J]. 材料导报, 2025, 39(1): 23090126-5.
[4] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[5] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[6] 司春棣, 崔亚宁, 李松, 贾彦顺, 凡涛涛, 张义. 铁尾矿在沥青路面中的资源化利用研究进展与展望[J]. 材料导报, 2024, 38(22): 24050001-13.
[7] 张雷, 龙伟民, 樊志斌, 都东, 刘大双, 孙志鹏, 李宇佳, 尚勇. CuTi对Ti-6Al-4V钛合金表面金刚石/AlSi复合钎涂层组织与耐磨性能的影响[J]. 材料导报, 2024, 38(21): 23080114-4.
[8] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[9] 王同波, 李伯龙, 亓鹏, 王云鹏, 莫永达, 娄花芬. 含铒近α型高温钛合金中α相的动/静态球化机制[J]. 材料导报, 2024, 38(17): 23100083-6.
[10] 李红梅, 孟建兵, 于浩洋, 董小娟, 周海安, 战胜杰, 唐友泉. ZnO纳米颗粒掺杂对镍钛合金表面微弧氧化膜层形貌及性能的影响[J]. 材料导报, 2024, 38(13): 22110123-7.
[11] 马彭逸, 李琛, Ouaskioud Oumaima, 任丽. 胶原蛋白促进成骨细胞在磷灰石基质上增殖和分化[J]. 材料导报, 2024, 38(11): 23050130-11.
[12] 鲁雯雨, 宁志华, 彭焘, 陈海燕, 金延. 聚氨酯蘑菇状仿生微纤维的混合黏附破坏分析[J]. 材料导报, 2024, 38(10): 22120085-7.
[13] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[14] 赵泽芳, 何青松, 张昊, 于敏, 陆吉, 田成博, 潘辉. 基于PDMS的蘑菇状仿生黏附微阵列新型制造方法[J]. 材料导报, 2023, 37(5): 21070247-6.
[15] 方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed