Please wait a minute...
CLDB  2017, Vol. 31 Issue (13): 160-165    https://doi.org/10.11896/j.issn.1005-023X.2017.013.022
  生物医用材料 |
内源性外泌体作为药物递释系统的研究进展*
赵嘉兰, 王悦敏, 牛亚伟, 董晓婷, 秦凌浩
广东药科大学药剂系,广州 510006
Research Progress of Exosomes Used as Drug Delivery System
ZHAO Jialan, WANG Yuemin, NIU Yawei, DONG Xiaoting, QIN Linghao
Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006
下载:  全 文 ( PDF ) ( 1345KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 外泌体是一种活细胞分泌的直径为40~100 nm的囊状小泡,是细胞间信息传递、物质交换的重要媒介。作为天然内源性的物质转运载体,采用外泌体负载药物具有毒性低、无免疫原性、渗透性好等优势,目前,外泌体已成功负载小分子化学药物、基因药物用于治疗肿瘤及阿尔茨海默症等疾病。文章将基于外泌体的发展情况就外泌体在药物递送系统中的应用进行详细的介绍分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵嘉兰
王悦敏
牛亚伟
董晓婷
秦凌浩
关键词:  外泌体  载体  药物递送系统  肿瘤    
Abstract: Exosomes are membrane vesicles secreted by living cells with size of 40—100 nm. Exosomes are very important natural messengers involving in cellular communication and substance transportation. As natural carriers for material transportation, exosomes have unique advantages including low toxicity, low immunogenicity and good permeability. So far, small molecular chemical drugs and genetic drugs have been successfully delivered by exosomes for treating tumor disease and Alzheimer′s disease. In this paper, a detailed review of exosomes used as drug delivery system is presented based on recent researches.
Key words:  exosomes    carriers    drug delivery system    tumor
出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TB39  
基金资助: *广东省自然科学基金(2014A030310362);广州市科技计划项目(201508010036);广州市产学研协同创新重大专项(201605131249066)
通讯作者:  秦凌浩:通讯作者,男,1980年生,博士,副教授,硕士研究生导师,主要从事药剂学研究 E-mail:dor_qin@163.com   
作者简介:  赵嘉兰:女,1992年生,硕士研究生,从事药剂学研究 E-mail:m13424039504@163.com
引用本文:    
赵嘉兰, 王悦敏, 牛亚伟, 董晓婷, 秦凌浩. 内源性外泌体作为药物递释系统的研究进展*[J]. CLDB, 2017, 31(13): 160-165.
ZHAO Jialan, WANG Yuemin, NIU Yawei, DONG Xiaoting, QIN Linghao. Research Progress of Exosomes Used as Drug Delivery System. Materials Reports, 2017, 31(13): 160-165.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.022  或          https://www.mater-rep.com/CN/Y2017/V31/I13/160
1 Xitong D, Xiaorong Z. Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases[J]. Gene,2016,575(2):377.
2 Kim M S, Haney M J, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells[J]. Nanome-dicine: Nanotechnol, Biol Med,2016,12(3):655.
3 Record M, Subra C, Silvente-Poirot S, et al. Exosomes as intercellular signalosomes and pharmacological effectors[J]. Biochem Pharmacology,2011,81(10):1171.
4 Taverna S, Giallombardo M, Gil-Bazo I, et al. Exosomes isolation and characterization in serum is feasible in non-small cell lung cancer patients: Critical analysis of evidence and potential role in clinical practice[J]. Oncotarget,2016,7(19):28748.
5 Johnsen K B, Gudbergsson J M, Skov M N, et al. A comprehensive overview of exosomes as drug delivery vehicles-endogenous nanocarriers for targeted cancer therapy[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer,2014,1846(1):75.
6 Nishida-Aoki N, Ochiya T. Interactions between cancer cells and normal cells via miRNAs in extracellular vesicles[J]. Cellular Molecular Life Sci,2015,72(10):1849.
7 Milane L, Singh A, Mattheolabakis G, et al. Exosome mediated communication within the tumor microenvironment[J]. J Controlled Release,2015,219:278.
8 Vlassov A V, Magdaleno S, Setterquist R, et al. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials[J]. Biochim Et Biophys Acta,2012,1820(7):940.
9 Tran T H, Mattheolabakis G, Aldawsari H, et al. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases[J]. Clinical Immunology,2015, 160(1):46.
10 Kawikova I, Askenase P W. Diagnostic and therapeutic potentials of exosomes in CNS diseases[J]. Brain Res,2015,1617:63.
11 Batrakova E V, Kim M S. Using exosomes, naturally-equipped nanocarriers, for drug delivery[J]. J Controlled Release,2015,219:396.
12 Yamashita T, Takahashi Y, Nishikawa M, et al. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation[J]. Eur J Pharmaceutics Biopharmaceutics,2016,98:1.
13 Johnsen K B, Gudbergsson J M, Skov M N, et al. Evaluation of electroporation-induced adverse effects on adipose-derived stem cell exosomes[J]. Cytotechnology,2016,8:1.
14 Ban J J, Lee M, Im W, et al. Low pH increases the yield of exosome isolation[J]. Biochem Biophys Res Commun,2015,461(1):76.
15 Sunkara V, Woo H K, Cho Y K. Emerging techniques in the isolation and characterization of extracellular vesicles and their roles in cancer diagnostics and prognostics[J]. Analyst, 2016,141(2):371.
16 Hannafon B N, Ding W Q. Intercellular communication by exosome-derived microRNAs in cancer[J]. Int J Molecular Sci,2013,14(7):14240.
17 Hazan-Halevy I, Rosenblum D, Weinstein S, et al. Cell-specific uptake of mantle cell lymphoma-derived exosomes by malignant and non-malignant B-lymphocytes[J]. Cancer Lett, 2015,364(1):59.
18 Toda Y, Takata K, Nakagawa Y, et al. Effective internalization of U251-MG-secreted exosomes into cancer cells and characterization of their lipid components[J]. Biochem Biophys Res Commun,2015,456(3):768.
19 Takahashi Y, Nishikawa M, Shinotsuka H, et al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection[J].J Biotechnol,2013,165(2):77.
20 Smyth T, Kullberg M, Malik N, et al. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes[J]. J Controlled Release,2015,199:145.
21 Fuhrmann G, Serio A, Mazo M, et al. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins[J]. J Controlled Release,2015,205:35.
22 Haney M J, Klyachko N L, Zhao Y, et al. Exosomes as drug deli-very vehicles for Parkinson′s disease therapy[J]. J Controlled Release,2015,207:18.
23 Kooijmans S A A, Stremersch S, Braeckmans K, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles[J]. J Controlled Release,2013,172(1):229.
24 Lamichhane T N, Raiker R S, Jay S M. Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery[J]. Molecular Pharmaceutics,2015,12(10):3650.
25 Wahlgren J, Karlson T D L, Brisslert M, et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes[J]. Nucleic Acids Res,2012, 40(17):610.
26 Shtam T A, Kovalev R A, Varfolomeeva E Y, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro[J]. Cell Communication Signaling,2013,11(1):1.
27 Pascucci L, Coccè V, Bonomi A, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery[J]. J Controlled Release,2014,192:262.
28 Munoz J L, Bliss S A, Greco S J, et al. Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity[J]. Molecular Therapy—Nucleic Acids,2013,2(10):e126.
29 Katakowski M, Buller B, Zheng X, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth[J]. Cancer Lett,2013,335(1):201.
30 Zhao Y, Haney M J, Gupta R, et al. GDNF-Transfected macrophages produce potent neuroprotective effects in parkinson′s disease mouse model[J]. Plos One,2014,9(9):e106867.
31 Alhasan A H, Patel P C, Choi C H J, et al. Exosome encased spherical nucleic acid gold nanoparticle conjugates as potent microRNA regulation agents[J]. Small,2014,10(1):186.
32 Alvarez-Erviti L, Seow Y, Yin H F, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J]. Nat Biotechnol,2011,29(4):341.
33 Lee J, Lee H, Goh U, et al. Cellular engineering with membrane fusogenic liposomes to produce functionalized extracellular vesicles[J]. ACS Appl Mater Interfaces,2016,8(11):6790.
34 Kooijmans S A, Fliervoet L A, Van d M R, et al. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time[J]. J Controlled Release,2016, 224:77.
35 Qi H, Liu C, Long L, et al. Blood exosomes endowed with magnetic and targeting properties for cancer therapy[J]. ACS Nano,2016,10(3):3323.
36 Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy[J]. Biomaterials,2014,35(7):2383.
37 Toffoli G, Hadla M, Corona G, et al. Exosomal doxorubicin reduces the cardiac toxicity of doxorubicin[J]. Nanomedicine,2015,10(19):2963.
38 Saari H, Lázaro-Ibáñez E, Viitala T, et al. Microvesicle-and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells[J]. J Controlled Release,2015,220:727.
39 Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug deli-very system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes[J]. Molecular Therapy,2010,18(9):1606.
40 Zhuang X, Xiang X, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain[J]. Molecular Therapy,2011,19(10):1769.
41 Ohno S, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast can-cer cells[J]. Molecular Therapy,2013,21(1):185.
42 Cooper J M, Wiklander P B, Nordin J Z, et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice[J]. Movement Disorders, 2014,29(12):1476.
43 Xin H, Li Y, Cui Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats[J]. J Cerebral Blood Flow Metabolism,2013,33(11):1711.
44 Bonafede R, Scambi I, Peroni D, et al. Exosome derived from murine adipose-derived stromal cells: Neuroprotective effect onin vitromodel of amyotrophic lateral sclerosis[J]. Experimental Cell Res,2015,340(1):150.
45 Pusic A D, Pusic K M, Clayton B L L, et al. IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination[J]. J Neuroimmunology,2014,266(1):12.
46 Nojima H, Freeman C M, Schuster R M, et al. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate[J]. J Hepatology,2016,64(1):60.
47 Choi J S, Yoon H I, Lee K S, et al. Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration[J]. J Controlled Release,2015,222:107.
48 Li K, Chang S, Wang Z, et al. A novel micro-emulsion and micelle assembling method to prepare DEC205 monoclonal antibody coupled cationic nanoliposomes for simulating exosomes to target dendritic cells[J]. Int J Pharmaceutics,2015,491(1):105.
49 Jang S C, Kim O Y, Yoon C M, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors[J]. ACS Nano,2013,7(9):7698.
50 Jo W, Kim J, Yoon J, et al. Large-scale generation of cell-derived nanovesicles[J]. Nanoscale,2014,6(20):12056.
51 Yin W, Ouyang S, Li Y, et al. Immature dendritic cell-derived exosomes: A promise subcellular vaccine for autoimmunity[J]. Inflammation,2013,36(1):232.
52 Yeo R W Y, Lai R C, Zhang B, et al. Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery[J]. Adv Drug Delivery Rev,2013,65(3):336.
53 Lai R C, Yeo R W Y, Tan K H, et al. Exosomes for drug delive-ry—A novel application for the mesenchymal stem cell[J]. Biotech-nol Adv,2013,31(5):543.
[1] 鲁丽佳, 计丕霞, 陈全, 易鹏, 吴敏. 生物炭提升土壤中解磷菌定殖及其解磷能力[J]. 材料导报, 2024, 38(21): 23050070-9.
[2] 陈钰莹, 赵璐, 白云峰, 冯锋. 铜基金属有机框架在肿瘤治疗中的研究进展[J]. 材料导报, 2024, 38(21): 23070142-15.
[3] 张静, 高陈陈, 吴明明, 陈诚. 微/纳米级有机空心粒子构造及功能应用研究进展[J]. 材料导报, 2024, 38(21): 23040199-11.
[4] 刘晨爽, 田野, 盛显良, 斯琴塔娜, 张玉辉. 天然高分子多糖在药物传递领域中的应用[J]. 材料导报, 2024, 38(19): 23050200-18.
[5] 侯福星, 白一鸣, 沈頔, 王剑云. 微生物自修复混凝土载体材料研究进展[J]. 材料导报, 2024, 38(13): 23040048-15.
[6] 杨水艳, 盛扬, 孙一新, 蔡仁钦, Mark Bradley, 张嵘. 基于丙烯酸-N-琥珀酰亚胺酯共聚物交联剂的壳聚糖水凝胶的生物相容性研究[J]. 材料导报, 2024, 38(12): 22120119-10.
[7] 张玉金, 杨琦, 张瑞, 高宇新, 拜永孝. 硅胶载体的制备及在聚烯烃催化剂领域中的应用[J]. 材料导报, 2024, 38(1): 22040363-11.
[8] 黄道远, 谢德明. 叶酸修饰的金属有机配位聚合物用于肿瘤靶向及化学/光热协同治疗[J]. 材料导报, 2023, 37(20): 22040099-6.
[9] 唐昭敏, 田维君. Fe3O4磁性纳米药物用于克服肿瘤多药耐药性的研究[J]. 材料导报, 2023, 37(15): 22010219-7.
[10] 韩欣彤, 曹阳, 文峰, 高助威, 李成欣, 于晓龙. 氧化石墨烯与氮掺杂氧化石墨烯量子点负载去氧地胆草内酯抑制肿瘤细胞的研究[J]. 材料导报, 2023, 37(14): 22030289-7.
[11] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[12] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[13] 张瑜, 张泗达, 丁秀仿, 张瑞华, 陈东, 徐建富, 附青山. pH敏感型水凝胶在药物递送中的研究进展[J]. 材料导报, 2022, 36(Z1): 21120138-5.
[14] 郭建新, 周芸, 汪天尧, 闫敬明, 郭路, 左孝青. Al2O3/FeCrNi复合蜂窝载体材料的制备及性能[J]. 材料导报, 2022, 36(9): 20120112-6.
[15] 叶舒岳, 冯雅丽, 史海斌. 智能响应型小分子探针在肿瘤诊疗方面的研究进展[J]. 材料导报, 2022, 36(3): 21120202-15.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed