Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (14): 2390-2395    https://doi.org/10.11896/j.issn.1005-023X.2018.14.012
  无机非金属及其复合材料 |
煤矸石集料混凝土抗压强度及耐久性能
马宏强1, 易成1, 朱红光1, 董作超2, 陈宏宇1, 王佳欣1, 李德毅1
1 中国矿业大学北京力学与建筑工程学院,北京 100083;
2 江苏科技大学土木工程与建筑学院,镇江 212005
Compressive Strength and Durability of Coal Gangue Aggregate Concrete
MA Hongqiang1, YI Cheng1, ZHU Hongguang1, DONG Zuochao2, CHEN Hongyu1, WANG Jiaxin1, LI Deyi1
1 School of Mechanics and Civil Engineering, China University of Mining and Technology Beijing, Beijing 100083;
2 School of Architecture and Civil Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005
下载:  全 文 ( PDF ) ( 3904KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以煤矸石-普通碎石混合作为粗集料制备了一系列混凝土试样,其中煅烧和未煅烧煤矸石等量替代普通碎石的掺量为0%、30%、50%、70%和100%,探究了煤矸石粗集料掺量和700 ℃煅烧对混凝土抗压强度、快速氯离子渗透、抗碳化性能和抗硫酸盐侵蚀性能的影响,并借助X射线衍射仪(XRD)观测矿物成分变化,利用扫描电子显微镜(SEM)观测微观结构。实验结果表明煤矸石作混凝土集料是可行的,最大掺量受混凝土设计强度和所处环境的限制。煤矸石与胶凝材料粘结处空腔的存在不利于混凝土抗压强度和耐久性能,但对固化氯离子性能有利。相比于掺未煅烧煤矸石的混凝土,掺煅烧煤矸石的混凝土的内部结构更致密,但煅烧煤矸石自身的缺陷导致其未获得较大优势。后续研究将致力于更大程度地激发煅烧煤矸石集料的活性以更好地发挥其优势。本研究为煤矸石的大宗高效利用提供试验基础和理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马宏强
易成
朱红光
董作超
陈宏宇
王佳欣
李德毅
关键词:  煤矸石  抗压强度  快速氯离子渗透  抗碳化性能  抗硫酸盐侵蚀  粗集料混凝土    
Abstract: We herein prepared a series of concrete specimens with the mixed coarse aggregate of coal gangue and ordinary gravel, in which the calcined or uncalcined coarse coal gangue equivalently substituted for 0%,30%,50%,70% and 100% of the gravel. The influences of substitution amount and 700 ℃ calcination of coarse coal gangue on compressive strength, anti-carbonation performance, rapid chloride ion penetration and sulfate attack resistance of the concrete were investigated, and the mineral composition changes and the microstructure were observed by XRD and SEM, respectively. Our experiment validated the feasibility of utilizing coal gangue as coarse aggregate for concrete, with a maximum substitution amount determined by the concrete’s designed strength and environmental factors. The existence of the cavities at the bond between the coal gangue and the cementing material inhibits compressive strength and durability of the concrete, but is beneficial to the concrete’s resistance against chloride ion per-meation. The substitution of calcined coarse coal gangue can result in a more dense concrete structure compared to uncalcined coarse coal gangue, and nonetheless holds slight advantage due to its intrinsic defects. Further research is expected to promote the excitation upon the calcined coarse coal gangue aggregate and amplify its advantage. The present work can provide experimental basis and theoretical reference for the highly efficient utilization of coal gangue.
Key words:  coal gangue    compressive strength    rapid chloride ion penetration    anti-carbonation performance    resistance to sulfate attack    coarse aggregate concrete
               出版日期:  2018-07-25      发布日期:  2018-07-31
ZTFLH:  TU528.59  
基金资助: 国家自然科学基金(51578539);北京市自然科学基金(8164061)
作者简介:  马宏强:男,1992年生,博士研究生,主要从事固体废弃物处理及混凝土耐久性能研究 E-mail:mahongqiang1992@163.com 易成:男,1962年生,博士,博士研究生导师,主要从事混凝土耐久性研究 E-mail:uu_gr@qq.com
引用本文:    
马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
MA Hongqiang, YI Cheng, ZHU Hongguang, DONG Zuochao, CHEN Hongyu, WANG Jiaxin, LI Deyi. Compressive Strength and Durability of Coal Gangue Aggregate Concrete. Materials Reports, 2018, 32(14): 2390-2395.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.14.012  或          http://www.mater-rep.com/CN/Y2018/V32/I14/2390
1 Li Y J, Xing Y, Zhang X, et al. Experimental study on the durability of the concrete with coal gangue aggregate[J]. Journal of China Coal Society,2013,38(7):1215(in Chinese).
李永靖,邢洋,张旭,等.煤矸石骨料混凝土的耐久性试验研究[J].煤炭学报,2013,38(7):1215.
2 Li D X, Song X Y, Gong C C, et al. Research on cementitious behavior and mechanism of pozzolanic cement with coal gangue[J]. Cement and Concrete Research,2006,36(9):1752.
3 Zhang J X, Duan P X. Chloride consolidation and penetration beha-vior in harden mortar of gangue added cement[J]. Advanced Mate-rials Research,2012,374-377:1831.
4 Wang Z S, Wang L J, Su H L, et al. Optimization of coarse aggregate content based on efficacy coefficient method[J]. Journal of Wuhan University of Technology (Materials Science Edition),2011,26(2):330.
5 Zhang J X, Chen W L, Yang R J. Experimental study on basic pro-perties of coal gangue aggregate[J]. Journal of Building Materials,2010,13(6):739(in Chinese).
张金喜,陈炜林,杨荣俊. 煤矸石集料基本性能的试验研究[J].建筑材料学报,2010,13(6):739.
6 Wang Jinman, Qin Qian, Hu S J,et al. A concrete material with waste coal gangue and fly ash used for farmland drainage in high groundwater level areas[J]. Journal of Cleaner Production,2016,112(1):631.
7 Cong X Y, Lu S, Yao Y,et al. Fabrication and characterization of self-ignition coal gangue autoclaved aerated concrete[J]. Materials and Design,2016,97:155.
8 Yao Y, Wu H, Wang L. The microstructure research on interfacial transition zone of filling material containing FA and coal gangue[J]. Advanced Materials Research,2011,287-290:1125.
9 Meddah M S, Zitouni S, et al. Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete[J]. Construction and Building Materials,2010,24(4):505.
10 Zhang J X, Chen W L, Jin S S, et al. Investigation on durability of coal gangue aggregate concrete[J]. Journal of Beijing University of Technology,2011,37(1):116(in Chinese).
张金喜,陈炜林,金珊珊,等.煤矸石集料混凝土耐久性研究[J].北京工业大学学报,2011,37(1):116.
11 Li Y J, Yan X P, Zhang X, et al. Experimental research on seismic behavior of reinforced concrete column composed of coal gangue aggregate[J]. Journal of the China Society,2013,38(6):1006(in Chinese).
李永靖,闫宣澎,张旭,等.煤矸石骨料钢筋混凝土柱的抗震性能试验研究[J].煤炭学报,2013,38(6):1006.
12 Zhang Y, Ma G, Liu Y, et al. Mix design for thermal insulation concrete using waste coal gangue as aggregate[J]. Materials Research Innovations,2015,19(5):878.
13 Wang Q, Liu S, Wang J B, et al. Research on resistance to chloride ion of the coal gangue coarse aggregate concrete[J]. Concrete,2016,332(8):36(in Chinese).
王晴,刘锁,王继博,等.煤矸石粗集料混凝土抗氯离子渗透性能的研究[J].混凝土,2016,332(8):36.
14 Eric Ryan, Edwin Burdette, Ryan Ankabrandt, et al. Comparison of two methods to assess the resistance of concrete to chloride ion penetration[J]. Journal of Materials in Civil Engineering,2014,26(4):698.
15 Fang X W, Shen C N, Yang D B, et al. Investigations of influence factor on the rate of concrete sulfate attack[J]. Journal of Building Materials,2007,10(1):89(in Chinese).
方祥位,申春妮,杨德斌,等.混凝土硫酸盐侵蚀速度影响因素研究[J].建筑材料学报,2007,10(1):89.
16 Yang Q B, Lv M X, Luo Y B, et al. Effects of surface-activated coal gangue aggregates on properties of cement-based materials[J]. Journal of Wuhan University of Technology(Materials Science Edition),2013,28(6):1118.
17 Li Y, Yao Y, Liu X M, et al. Improvement on pozzolanic reactivity of coal gangue by integrated thermal and chemical activative[J]. Fuel,2013,109:527.
18 Dong Z C, Xia J W, Fan C, et al. Activity of calcined coal gangue fine aggregate and its effect on the mechanical behavior of cement mortar[J]. Construction and Building Materials,2015,100:63.
19 Song X Y, Zhang K, Han J Y, et al. Effect of thermal activated coal gangue on pozzolanic effect and cement properties[J]. Materials Review B:Research Papers,2011,25(11):118(in Chinese).
宋旭艳,张康,韩静云,等.热活化煤矸石的火山灰效应及其对水泥性能的影响[J].材料导报:研究篇,2011,25(11):118.
20 Shi H S, Shi T, Chen B C, et al. Research of chloride ion diffusivity in reactive powder concrete with blast-furnace slag[J]. Journal of Tongji University(Natural Science),2006,34(1):93(in Chinese).
施惠生,施韬,陈宝春,等.掺矿渣活性粉末混凝土的抗氯离子渗透性研究[J].同济大学学报(自然科学版),2006,34(1):93.
21 Wu D, Zhang Y L, Liu Y C. Mechanical performance and ultrasonic properties of cemented gangue backfill with admixture of fly ash[J]. Ultrasonics,2016,64:89.
22 Li D X, Song X Y, Gong C C, et al. Research on cementitious behavior and mechanism of pozzolanic cement with coal gangue[J]. Cement and Concrete Research,2006,36(9):1752.
23 Zhang L M, Jiang W H. A study on carbonation of concrete in natural condition and its corrclation with artificial accelerated carbonation[J]. Xi’an University of Architecture and Technology(Natural Science),1990(3):207(in Chinese).
张令茂,江文辉.混凝土自然碳化及其与人工加速碳化的相关性研究[J].西安建筑科技大学学报(自然科学版),1990(3):207.
[1] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[2] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[3] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[4] 胡明玉, 付超, 魏丽丽, 刘章君. 等钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J]. 《材料导报》期刊社, 2018, 32(8): 1230-1235.
[5] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[6] 关虓, 邱继生, 潘杜, 郑娟娟, 王民煌. 冻融环境下煤矸石混凝土损伤度评估方法研究[J]. 材料导报, 2018, 32(20): 3546-3552.
[7] 王德辉, 史才军, 贾煌飞. 石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响[J]. 材料导报, 2018, 32(17): 2986-2991.
[8] 张广泰, 田虎学, 李宝元, 张继飞, 王玉喜. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 《材料导报》期刊社, 2018, 32(14): 2396-2399.
[9] 王爱国,刘朋,孙道胜,刘开伟,方立安,曹菊芳. 煅烧煤矸石粉体材料活性评价方法的研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1903-1909.
[10] 姜玉丹,金祖权,陈永丰,范君峰. 高吸水树脂对混凝土水化及强度的影响[J]. 《材料导报》期刊社, 2017, 31(24): 40-44.
[11] 方 圆,陈 兵. 玻璃纤维对磷酸镁水泥砂浆力学性能的增强作用及机理[J]. 《材料导报》期刊社, 2017, 31(24): 6-9.
[12] 熊锐, 杨晓凯, 杨发, 刘子铭, 王小雯, 陈华鑫. 活化煤矸石改性沥青胶浆粉胶比确定及粘温特性研究*[J]. 《材料导报》期刊社, 2017, 31(2): 121-125.
[13] 秦晓川, 孟少平, 涂永明. 高强混凝土材料细观冻融损伤与抗压强度的关系*[J]. 《材料导报》期刊社, 2017, 31(2): 117-120.
[14] 莫宗云, 高小建. 偏高岭土改性混凝土的耐久性研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 115-119.
[15] 漆小鹏, 李文, 罗远方, 杨辉. 新型钇-羟基磷灰石骨水泥的制备及性能研究*[J]. CLDB, 2017, 31(13): 151-155.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed