Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22060212-15    https://doi.org/10.11896/cldb.22060212
  无机非金属及其复合材料 |
不同离子对混凝土碱硅酸反应影响的研究进展
龚青南, 王德辉*
福州大学土木工程学院,福州 350108
Research Progress on the Effects of Different Ions on Alkali-Silica Reaction of Concrete
GONG Qingnan, WANG Dehui*
College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
下载:  全 文 ( PDF ) ( 34450KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土的碱硅酸反应(Alkali-silica reaction,ASR)本质上是孔溶液中的离子、水分子与骨料中活性二氧化硅的反应。根据不同离子对ASR的影响效果,可将离子分为碱离子(Na+、K+和OH-)、锂离子和铝离子、钙离子。碱离子(Na+、K+和OH-)促进混凝土的碱硅酸反应,导致混凝土发生更严重的膨胀性破坏。Al3+和Li+减缓混凝土碱硅酸反应造成的膨胀性破坏;Ca2+起到的作用与n(Ca)/n(Si)(物质的量比)密切相关,当n(Ca)/n(Si)<0.2时,Ca2+对ASR起促进作用;当n(Ca)/n(Si)≥0.2时,Ca2+对ASR起抑制作用。本文首先介绍了ASR反应产物的最新研究进展,包括ASR产物的种类、微观形貌、原子结构及水稳定性,综述了这些离子对ASR反应过程、ASR产物组成、ASR产物结晶性能及膨胀性的影响,展望了不同离子对混凝土ASR影响的未来研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚青南
王德辉
关键词:  碱硅酸反应  碱离子  锂离子  铝离子  钙离子  ASR产物    
Abstract: Alkali-silica reaction (ASR) of concrete is essentially the reaction of ions and water molecules in the pore solution with active silica in the aggregate. According to the influence of different ions on ASR, ions can be divided into alkali ions (Na+, K+and OH-), lithium ion and aluminum ion, calcium ion. Alkali ions promote the alkali-silica reaction of concrete, resulting in more severe expansive damage to concrete. Lithium and aluminum ions slow down the expansive damage caused by alkali-silica reaction of concrete. The role of Ca2+ is closely related to n(Ca)/n(Si) (molar ratio). When the n(Ca)/n(Si)<0.2, Ca2+ promotes ASR. When the n(Ca)/n(Si)≥0.2, Ca2+ inhibits ASR. Firstly, the latest research progresses of ASR products are introduced, including the types, micro morphology, atomic structure and water stability of ASR pro-ducts. Then, influences of these ions on the ASR process, the composition of ASR products, the crystallization properties and expansion of ASR products are reviewed. Finally, the future research direction of the influence of different ions on ASR is prospected.
Key words:  alkali-silica reaction    alkali ions    lithium ion    aluminum ion    calcium ion    ASR products
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TU528.04  
基金资助: 国家自然科学基金(51608187)
通讯作者:  *王德辉,博士,福州大学土木工程学院副研究员,旗山学者,国家自然科学基金委函评专家。2004年本科毕业于华北水利水电大学土木工程专业,2009年硕士毕业于中南大学土木工程材料专业,2015年博士毕业于湖南大学土木工程专业,主要从事超高性能混凝土的凝结硬化特性、石灰石粉对水泥基材料微观结构和性能的影响、腐蚀性物质在FRP筋海水海砂混凝土中的传输特性和腐蚀机理、3D打印混凝土等研究工作。作为项目负责人主持了国家重点研发计划项目子课题、国家自然科学基金青年科学基金、中国博士后科学基金面上项目、清华大学水沙科学与水利水电工程国家重点实验室开放基金、建筑安全与环境重点实验室开放基金等10余项课题。以第一作者或通信作者发表SCI论文12篇、EI论文5篇、ESI论文2篇,参编会议论文集1部。多篇SCI论文在TOP期刊成为“The Most Downloaded Article”,并得到多次引用。dhwang@fzu.edu.cn   
作者简介:  龚青南,2022年本科毕业于莆田学院土木工程专业,现为福州大学土木工程学院硕士研究生,在王德辉副教授的指导下进行研究。目前主要研究领域为混凝土的碱硅酸反应,发表1篇SCI论文和1篇北大核心兼WJCI收录论文。
引用本文:    
龚青南, 王德辉. 不同离子对混凝土碱硅酸反应影响的研究进展[J]. 材料导报, 2024, 38(2): 22060212-15.
GONG Qingnan, WANG Dehui. Research Progress on the Effects of Different Ions on Alkali-Silica Reaction of Concrete. Materials Reports, 2024, 38(2): 22060212-15.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060212  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22060212
1 Fanijo E O, Kolawole T J, Almakrab A. Case Studies in Construction Materials, 2021, 15, e00563.
2 Viviani H E. Australian Journal of Applied Sciences, 1951, 2, 108.
3 Hansen W C. Journal of the American Concrete Institute, 1944, 15, 213.
4 Vayghan A G, Rajabipour F, Rosenberger J L. Cement and Concrete Research, 2016, 83, 45.
5 Shi Z G, Geng G Q, Leemann A, et al. Cement and Concrete Research, 2019, 121, 58.
6 Cole W F, Lancucki C J, Sandy M J. Cement and Concrete Research, 1981, 11(3), 443.
7 Benmore C J, Monteiro P J M. Cement and Concrete Research, 2010, 40, 892.
8 Leemann A. Cement and Concrete Research, 2017, 102, 41.
9 Leemann A, Shi Z G, Lindgård J. Cement and Concrete Research, 2020, 137, 106190.
10 Shi Z G, Lothenbach B. Cement and Concrete Research, 2019, 126, 105898.
11 Shi Z G, Ma B, Lothenbach B. Cement and Concrete Research, 2021, 140, 106311.
12 Lindgård J, Andiç-Çakır Ö, Fernandes I, et al. Cement and Concrete Research, 2012, 42, 223.
13 Rajabipour F, Giannini E, Dunant C, et al. Cement and Concrete Research, 2015, 76, 130.
14 Shi Z G, Shi C J, Zhao R, et al. Materials and Structures, 2015, 48, 743.
15 Shi Z G, Park S, Lothenbach B, et al. Cement and Concrete Research, 2020, 137, 106213.
16 Honorio T, Chemgne T O M, Shi Z G, et al. Cement and Concrete Research, 2020, 136, 106155.
17 Zubkova N V, Filinchuk Y E, Pekov I V, et al. European Journal of Mineralogy, 2010, 22 (4), 547.
18 Leemann A, Shi Z G, Wyrzykowski M, et al. Materials and Design, 2020, 195, 109066.
19 Geng G Q, Shi Z G, Leemann A, et al. Cement and Concrete Research, 2020, 129, 105958.
20 Rjp A, Ft B, Nph C, et al. Cement and Concrete Research, 2019, 123, 105774
21 Wei S H, Zheng K, Zhou J, et al. Cement and Concrete Research, 2022, 154, 106723.
22 Ichikawa T, Miura M. Cement and Concrete Research, 2007, 37, 1291.
23 Nguyen T N, Sanchez L F M, Li J C, et al. Cement and Concrete Composites, 2022, 134, 104817.
24 Bruno G, Mario D R, Jonathan W. Guide to diagnosis and appraisal of AAR damage to concrete in structures, Springer, England, 2013, pp. 13.
25 Kasaniya M, Thomas M D A. Cement and Concrete Research, 2022, 162, 107007.
26 Bazant Z P, Steffens A. Cement and Concrete Research, 2000, 30, 419.
27 Poole A B. In:9th International Conference on Alkali-Silica Reaction. England, 1992, pp. 782.
28 Hobbs D W. Alkali-silica reaction in concrete, ICE Virtual Library, England, 1988, pp. 56.
29 Lu D Y, Mei L B, Xu Z Z, et al. Cement and Concrete Research, 2006, 36, 1176.
30 Marshall W L, Warakomski J M. Geochim Cosmochim Acta, 1980, 44, 915.
31 Lu D Y, Mei L B, Xu Z Z, et al. Cement and Concrete Research, 2006, 36, 1191.
32 Strack C M, Barnes E, Ramsey M A, et al. Construction and Building Materials, 2020, 240, 117929.
33 Peterson K, Gress D, Dam T V, et al. Cement and Concrete Research, 2006, 36, 1523.
34 Shi Z G, Lothenbach B. Cement and Concrete Research, 2020, 127, 105914.
35 Chen G X, Cai Y B, Wang S J, et al. Test code for hydraulic concrete, China Water & Power Press, China, 2020, pp. 69 (in Chinese).
陈改新, 蔡跃波, 王少江, 等. 水工混凝土试验规程, 中国水利水电出版社, 2020, pp. 69.
36 Shon C S, Zollinger D G, Sarkar S L. Cement and Concrete Research, 2002, 32, 1981.
37 Leemann A, Lothenbach B. Cement and Concrete Research, 2008, 38, 1162.
38 McCoy W J, Caldwell A G. Journal of American Concrete Institute, 1951, 22, 693.
39 Feng X, Thomas M D A, Bremner T W, et al. Cement and Concrete Research, 2010, 40, 94.
40 Leemann A, Lörtscher L, Bernard L, et al. Cement and Concrete Research, 2014, 59, 73.
41 Mitchell L D, Beaudoin J J, Grattan-Bellew P. Cement and Concrete Research, 2004, 34, 641.
42 Guo S C, Dai Q G, Si R Z. Cement and Concrete Research, 2019, 115, 220.
43 Mo X Y, Yu C, Xu Z. Cement and Concrete Research, 2003, 33, 115.
44 Diamond S, Ong S. In:Conference Record of the 9th International Conference on Alkali-Aggregate Reaction in Concrete. England, 1992, pp. 269.
45 Prezzi M, Monteiro P J M, Sposito G. ACI Materials Journal, 1998, 95, 3.
46 Zapała-Sławeta J, Owsiak Z. Construction and Building Materials, 2016, 115, 299.
47 Diamond S. Cement and Concrete Research, 1999, 29, 1271.
48 Thomas M, Hooper R, Stokes D. In:Conference Record of 11th International Conference on Alkali-Aggregate Reaction in Concrete. Canada, 2000, pp. 1283.
49 Stark D C. In:Conference Record of 9th International Conference on Alkali-Aggregate Reaction in Concrete. England, 1992, pp. 1017.
50 Deng Z M. Construction and Building Materials, 2022, 315, 125433.
51 Lumley J S. Cement and Concrete Research, 1997, 27, 235.
52 Collins C L, Ideker J H, Willis G S, et al. Cement and Concrete Research, 2004, 34, 1403.
53 Feng X, Thomas M D A, Bremner T W, et al. Cement and Concrete Research, 2005, 35, 1789.
54 Moser R D, Jayapalan A R, Garas V Y, et al. Cement and Concrete Research, 2010, 40, 1664.
55 Kandasamy S, Shehata M H. Cement and Concrete Composites, 2014, 49, 92.
56 Ramlochan T, Thomas M D A, Hooton R D, et al. Cement and Concrete Research, 2004, 34, 1341.
57 Li F H, Zhang G B, Zhou H Y, et al. Journal of Building Materials, 2017, 20(6), 5 (in Chinese).
李福海, 张桂斌, 周鸿屹, 等. 建筑材料学报, 2017, 20(6), 5.
58 Feng X X, Feng N Q. Journal of the Chinese Ceramic Society, 2002, 30(6), 6 (in Chinese).
封孝信, 冯乃谦. 硅酸盐学报, 2002, 30(6), 6.
59 Yu Y, Li G Z. Journal of Building Materials, 2008, 11(4), 475 (in Chinese).
于洋, 李国忠. 建筑材料学报, 2008, 11(4), 475.
60 Aquino W, Lange D A, Olek J. Cement and Concrete Composites, 2001, 23(6), 485.
61 Saha A K, Khan M N N, Sarker P K, et al. Construction and Building Materials, 2018, 171, 743.
62 Hong S Y, Glasser F P. Cement and Concrete Research, 2002, 32(7), 1101.
63 Komarneni S, Roy D M, Roy R. Cement and Concrete Research, 1982, 12(6), 773.
64 Komarmneni S, Roy D M. Science, 1983, 221(4611), 647.
65 Chappex T, Scrivener K L. Cement and Concrete Research, 2012, 42(12), 1645.
66 Chappex T, Scrivener K L. Journal of the American Ceramic Society, 2013, 96(2), 592.
67 Leemann A, Laetitia B, Salaheddine A, et al. Cement and Concrete Research, 2015, 76, 192.
68 Xu H Z. Journal of Building Materials, 2000, 3(3), 213 (in Chinese).
徐惠忠. 建筑材料学报, 2000, 3(3), 213.
69 Marfil S A, Maiza P J. Cement and Concrete Research, 1993, 23(6), 1283.
70 Shi Z G, Bin M, Barbara L. Cement and Concrete Research, 2021, 140, 106311.
71 Struble L, Diamond S. Cement and Concrete Research, 1981, 11, 611.
72 Struble L J, Diamond S. Journal of the American Ceramic Society, 1981, 64, 652.
73 Cong X D, Kirkpatrick R J, Diamond S. Cement and Concrete Research, 1993, 23, 811.
74 Chatterji S. Cement and Concrete Research, 1979, 9, 185.
75 Chatterji S, Jensen A D, Thaulow N, et al. Cement and Concrete Research, 1986, 16, 246.
76 Wang H, Gillott J E. Cement and Concrete Research, 1991, 21, 647.
77 Oey T, Plante E, Falzone G, et al. Cement and Concrete Composites, 2020, 110, 103592.
78 Monteiro P J M, Wang K, Sposito G, et al. Cement and Concrete Research, 1997, 27, 1899.
79 Zhang C, Wang A. Journal of Wuhan University of Technology, 2008, 23(1), 16.
80 Kawamura M, Iwahori K. Cement and Concrete Composites, 2004, 26(1), 47.
81 Powers T C, Steinour H H. Journal of American Concrete Institution, 1955, 26 (6), 497.
82 Geng G Q, Shi Z G, Leemann A, et al. Cement and Concrete Research, 2020, 129, 105958.
83 Powers T C. Steinour H H. Journal of American Concrete Institution, 1955, 51(26), 497.
84 Mo X Y, Lu D Y, Xu Z Z. Journal of Nanjing University of Chemical Technology, 2000, 22(3), 72 (in Chinese).
莫祥银, 卢都友, 许仲梓. 南京化工大学学报, 2000, 22(3), 72.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[3] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[4] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[5] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[6] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[7] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[8] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[9] 张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
[10] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[11] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[12] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[13] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[14] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[15] 陈守东, 查辰宇, 卢日环. 金属极薄带在锂离子电池中的应用与研究进展[J]. 材料导报, 2023, 37(23): 22070289-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed