Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22070123-11    https://doi.org/10.11896/cldb.22070123
  无机非金属及其复合材料 |
混凝土冻融破坏机理及寿命预测方法
董昊良1,2, 李化建1,3,*, 杨志强1,3, 温家馨1,2, 黄法礼1,3, 王振1,3, 易忠来1,3
1 中国铁道科学研究院集团有限公司,北京 100081
2 中国铁道科学研究院研究生部,北京 100081
3 中国铁道科学研究院集团有限公司高速铁路轨道技术国家重点实验室,北京 100081
Freeze-Thaw Failure Mechanisms and Service Life Prediction Methods of Concrete
DONG Haoliang1,2, LI Huajian1,3,*, YANG Zhiqiang1,3, WEN Jiaxin1,2, HUANG Fali1,3, WANG Zhen1,3, YI Zhonglai1,3
1 China Academy of Railway Science Corporation Limited, Beijing 100081, China
2 Graduate School, China Academy of Railway Sciences, Beijing 100081, China
3 State Key Laboratory Track Technology of High-speed Railway, China Academy of Railway Science Corporation Limited, Beijing 100081, China
下载:  全 文 ( PDF ) ( 16379KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 冻融破坏是我国严寒或寒冷地区混凝土的主要破坏形式,分析混凝土的冻融破坏过程、明确混凝土的冻融破坏机理、提出混凝土冻融损伤寿命预测方法对混凝土结构耐久性设计至关重要。本文根据混凝土结构的冻融破坏特点,从整体水冻和表面盐冻两方面阐述了混凝土的冻融破坏机理,论述了冻融破坏机理在不同混凝土结构中的适用性,分析了高原低气压地区混凝土冻融破坏更加严重且引起困难的原因;系统总结了基于试验数据和数值模拟的混凝土冻融损伤寿命预测方法,分析了两种寿命预测方法的优势和不足,以期为寒区混凝土的抗冻性设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董昊良
李化建
杨志强
温家馨
黄法礼
王振
易忠来
关键词:  混凝土  冻融破坏机理  高原低气压  寿命预测    
Abstract: Freeze-thaw failure is the main damage mechanism for concrete in cold regions. Revealing the freeze-thaw damage process and damage mechanism, and proposing the service life prediction method of concrete exposed to freeze thaw cycles are of great significance. In this paper, the freeze-thaw damage mechanism of concrete is reviewed in terms of water freezing and salt freezing according to the damage characteristics. Then, the freeze-thaw damage mechanism of concrete in plateau region and the influence of low air pressure on the damage of concrete are analyzed. The service life prediction of concrete in freeze-thaw environment is summarized by means of experimental study and numerical simulation. The pros and cons of the two life prediction methods are discussed, aiming to provide some references for the design of concrete structure in cold regions.
Key words:  concrete    freeze-thaw failure mechanism    low air pressure of plateau    service life prediction
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TU528  
基金资助: 国家自然科学基金(U1934206);铁科院院基金(2021WR002);腾讯基金会科学探索奖
通讯作者:  *李化建,中国铁道科学研究院研究员、博士研究生导师,主要从事固体废弃物建材资源化、高速铁路新型混凝土及其结构耐久性方面应用基础研究。主持国家自然科学基金、国家重点研发计划、省部级科研课题30余项,编制标准16部,研究成果获国家科技进步二等奖1项、技术发明二等奖1项,中国专利优秀奖2项,省部级科技进步特等奖3项、一等奖7项。chinasailor@163.com   
作者简介:  董昊良,2017年9月至2021年7月于北京科技大学获得工学学士学位。现为中国铁道科学研究院硕士研究生,在李化建研究员的指导下进行研究。主要从事高铁高性能混凝土及其结构耐久性领域的研究。
引用本文:    
董昊良, 李化建, 杨志强, 温家馨, 黄法礼, 王振, 易忠来. 混凝土冻融破坏机理及寿命预测方法[J]. 材料导报, 2024, 38(2): 22070123-11.
DONG Haoliang, LI Huajian, YANG Zhiqiang, WEN Jiaxin, HUANG Fali, WANG Zhen, YI Zhonglai. Freeze-Thaw Failure Mechanisms and Service Life Prediction Methods of Concrete. Materials Reports, 2024, 38(2): 22070123-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070123  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22070123
1 Wei Y, Chai J, Qin Y, et al. Journal of Material Cycles and Waste Ma-nagement, 2019, 21(6), 1550.
2 Qu F, Niu D T, Yang Y X. Materials Reports, 2015, 29(24), 5 (in Chinese).
屈锋, 牛荻涛, 杨宇曦. 材料导报, 2015, 29(24), 5.
3 Shi G Q, Chen Y H. Railway Construction Technology, 2006(z1), 4 (in Chinese).
石刚强, 陈永辉. 铁道建筑技术, 2006(z1), 4.
4 Ma H J, Yang F Q. Journal of Heilongjiang Hydraulic Engineering College, 2005, 32(3), 107 (in Chinese).
马红军, 杨甫权. 黑龙江大学工程学报, 2005, 32(3), 107.
5 Yuan J, Du Z, Wu Y, et al. Construction and Building Materials, 2019, 204, 317.
6 Yang C Z. Railway Engineering, 2017(1), 7 (in Chinese).
杨春枝. 铁道建筑, 2017(1), 7.
7 Wang R, Hu Z, Li Y, et al. Construction and Building Materials, 2022, 321, 126371.
8 Liu L, Zhang Y K, Rong H. Materials Reports, 2011, 25(9), 6 (in Chinese).
刘磊, 张运坤, 荣辉. 材料导报, 2011, 25(9), 6.
9 Fang Y H, Chen Y, Xiao T. Materials Reports, 2007, 21(4), 3 (in Chinese).
方永浩, 陈烨, 肖婷. 材料导报, 2007, 21(4), 3.
10 Qin X C, Meng S P, Tu Y M. Materials Reports, 2017, 31(2), 4 (in Chinese).
秦晓川, 孟少平, 涂永明. 材料导报, 2017, 31(2), 4.
11 Şahin Y, Akkaya Y, Taşdemir M A. Construction and Building Mate-rials, 2021, 270, 121458.
12 Powers T C. Journal of the American Concrete Institute, 1945, 16(4), 245.
13 Fagerlund G R. Report TVBM(Intern 7000-rapport), 1997, 7054, 1.
14 Bager D H. Freeze-Thaw Testing of Concrete, 2010, 1, 9.
15 Zhang W, Pi Y, Kong W, et al. Construction and Building Materials, 2020, 260(1-2), 119903.
16 Penttala V. Advanced Cement Based Materials, 1998, 7(1), 8.
17 Hua L, Xiao F, Li Y, et al. Construction and Building Materials, 2020, 252, 119054.
18 Powers T C. Journal of the American Concrete Institute, 1945, 16(4), 245.
19 Litvan G G. Journal of the American Ceramic Society, 2010, 55(1), 38.
20 Setzer M J. Journal of Colloid and Interface Science, 2001, 243(1), 193.
21 Liu L, Qin G, Zhou Y, et al. Construction and Building Materials, 2021, 274, 122112.
22 Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB/T 50082-2009, Standard for test methods of long-term performance and durability of ordinary concrete, China Architecture and Building Press, China, 2010 (in Chinese).
中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. GB/T 50082-2009, 普通混凝土长期性能和耐久性能试验方法标准, 中国建筑工业出版社, 2010.
23 ASTM C666-2015: Standard test method for resistance of concrete to rapid freezing and thawing. U.S., 2015.
24 CSA-A23. 2-2019. Concrete materials and methods of concrete construction/Test methods and standard practices for concrete. Canada, 2019.
25 BS5075 PART2: Concrete admixtures-Part 2: Specification for air-entraining admixtures. U.K., 1982.
26 Wang Z, Li H J, Huang F L, et al. Journal of Building Materials, 2023, 26(5), 516 (in Chinese).
王振, 李化建, 黄法礼, 等. 建筑材料学报, 2023, 26(5), 516.
27 Kang Y. In: Surface scaling mechanism and prediction for concrete, University of Michigan, USA, 2010, pp. 86.
28 Yang Q B. Journal of Building Materials, 2007, 10(5), 6 (in Chinese).
杨全兵. 建筑材料学报, 2007, 10(5), 6.
29 Yang Q B. Journal of Building Materials, 2012, 15(6), 6 (in Chinese).
杨全兵. 建筑材料学报, 2012, 15(6), 6.
30 John I I, Scherer G W. Cement and Concrete Research, 2007, 37(7), 1007.
31 John I I, Scherer G W. Cement & Concrete Research, 2007, 37(7), 1022.
32 ASTM C672-2003: Standard test method for scaling resistance of concrete surfaces exposed to deicing chemicals. U.S., 2003.
33 RILEMTC 176-IDC. Recommendations of RILEMTC 176: Test methods of frost resistance of concrete. U.S., 2002.
34 DIN EN 13687-1: 2002. Products and systems for the protection and repair of concretestructures Test methods-Determination of thermal compatibility Part 1: Freeze-thaw cycling with de-icing salt immersion English version of DIN EN 13687-1. Germany, 2002.
35 PD CEN/TS 12390-9:2016. Testing hardened concrete Part 9: Freeze-thaw resistance with de-icing salts-scaling. U.K., 2016.
36 Zheng D, Zhao D S. Science and Technology Review, 2017, 35(6), 13 (in Chinese).
郑度, 赵东升. 科技导报, 2017, 35(6), 13.
37 Ge X, Ge Y, Du Y, et al. Magazine of Concrete Research, 2018, 70(18), 919.
38 Liu Z, Hansen W. Cement and Concrete Research, 2015, 74, 10.
39 Li X, Fu Z, Luo Y, et al. Journal of Southeast University(Natural Science Edition), 2014, 44(5), 1046(in Chinese).
李雪峰, 付智, 罗翥, 等. 东南大学学报(自然科学版), 2014, 44(5), 1046.
40 He R, Wang T, Chen H X, et al. China Journal of Highway and Transport, 2020, 33(7), 13 (Chinese).
何锐, 王铜, 陈华鑫, 等. 中国公路学报, 2020, 33(7), 13.
41 Qin X C, Meng S P, Cao D F, et al. Construction and Building Materials, 2016, 125, 892
42 Li N, Long G, Fu Q, et al. Construction and Building Materials, 2019, 200, 198.
43 Li N, Long G, Li W, et al. Construction and Building Materials, 2020, 253, 118758.
44 Li Y, Wang Z, Wang L. Journal of Wuhan University of Technology-Mater 2019, 34(6), 1365.
45 Ge X, Ge Y, Li Q, et al. Construction and Building Materials, 2018, 187, 830.
46 Li X F, Fu Z, Wang H L. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2),7 (in Chinese).
李雪峰, 付智, 王华牢. 农业工程学报, 2018, 34(2), 7.
47 Shi Y, Yang H, Zhou S, et al. Advances in Materials Science and Engineering, 2018, 2018, 6528412.
48 Li X, Fu Z, Luo Z. Magazine of Concrete Research, 2015, 67(8), 391.
49 Li X F, Fu Z. Journal of the Chinese Ceramic Society, 2015, 43(8), 1076(Chinese).
李雪峰, 付智. 硅酸盐学报, 2015, 43(8), 1076.
50 Li X. Anti-frost design method and preventive measures for concrete structure in the Qinghai-Tibet Plateau. Ph. D. Thesis,Southeast University, China, 2015 (in Chinese).
李雪峰. 青藏高原地区混凝土抗冻设计及预防措施研究. 博士学位论文, 东南大学, 2015.
51 Huo J, Wang Z, Chen H, et al. Materials, 2019, 12(9), 1384.
52 Lan X, Zeng X, Zhu H, et al. Cement and Concrete Composites, 2022, 130, 104509.
53 Zhang C. A study of interfacial dilational properties and foam properties of foam combination flooding model systems. Ph. D. Thesis, Graduate School of Chinese Academy of Sciences, China, 2007(in Chinese).
张春荣. 泡沫复合驱模拟体系界面扩张粘弹与泡沫性质研究. 博士学位论文, 中国科学院研究生院, 2007.
54 Boubendir L, Chikh S, Tadrist L. International Journal of Multiphase Flow, 2020, 124, 103196.
55 Zeng X, Lan X, Zhu H, et al. Materials, 2020, 13(8), 1820.
56 Rosen M J, Kunjappu J T. In:Surfactants and interfacial phenomena. John Wiley and Sons, USA,2012, pp. 208.
57 Wong H, Pappas A, Zimmerman R, et al. Cement and Concrete Research, 2011, 41(10), 1067.
58 Ding B, Liu J P, Liu J Z. Concrete, 2006(11), 34(in Chinese).
丁蓓, 刘加平, 刘建忠. 混凝土, 2006(11), 34.
59 Ma X F. Effect of low humidity and low atmospheric pressure on the pro-perties of concrete. Master’s Thesis, Harbin University of Technology, China, 2016 (in Chinese).
马新飞. 低压低湿养护对混凝土性能影响的研究. 硕士学位论文, 哈尔滨工业大学, 2016.
60 Gao W, Qi J, Yang X, et al. International Journal of Heat and Mass Transfer, 2019, 134, 933.
61 Chen X, Liu X, Li L H, et al. Materials Reports, 2022, 36(12), 9 (in Chinese).
陈歆, 刘旭, 李立辉, 等. 材料导报, 2022, 36(12), 9.
62 Zeng X, Lan X, Zhu H, et al. Cement and Concrete Composites, 2021, 122, 104139.
63 Berhane Z. Journal Proceedings, 1984, 81(6), 560.
64 Qin Y, Hiller J E. Construction and Building Materials, 2016, 111, 77.
65 Deboucha W, Leklou N, Khelidj A, et al. Construction and Building Materials, 2017, 146, 687.
66 Loukili A, Khelidj A, Richard P. Cement and Concrete Research, 1999, 29(4), 577.
67 Liu Z, Lou B, Sha A, et al. Construction and Building Materials, 2019, 227, 116636.
68 Yang C Y, Cui K H, Bi W L. Concrete, 1994(6), 13(in Chinese).
杨长友, 崔可浩, 闭文利. 混凝土, 1994(6), 13.
69 Li H J, Zhao G T, Gao L, et al. Journal of the China Railway Society, 2023, 45(8), 1(in Chinese).
李化建, 赵国堂, 高亮, 等. 铁道学报, 2023, 45(8), 1.
70 Shang H, Yi T, Song Y. Materials, 2012, 5(9), 1698.
71 Shang H, Cao W, Wang B. The Scientific World Journal, 2014, 2014, 923032.
72 Song W L, Li X F, Ma K F. Advanced Materials Research, 2011, 163, 3429.
73 Li J Y, Wang Z G. Concrete, 2000(12), 5 (in Chinese).
李金玉, 王志刚. 混凝土, 2000(12), 5.
74 Xiao Q, Cao Z, Li Q. IOP Conference Series: Earth and Environmental Science, 2018, 128(1), 012095.
75 Wang J L. Concrete, 2009(4), 4 (in Chinese).
王立久. 混凝土, 2009 (4),1.
76 Penttala V. Cement and Concrete Research, 2006, 36(5), 921.
77 Hang M, Cui L, Wu J, et al. Journal of Building Engineering, 2020, 28, 101072.
78 Cañizo J A, Einav A, Lods B. Journal of Mathematical Analysis and Applications, 2018, 462(1), 801.
79 Li W, Pour-Ghaz M, Castro J, et al. Journal of Materials in Civil Engineering, 2012, 24(3), 299.
80 Hou B, Qiu J, Guo P, et al. Advances in Civil Engineering, 2021, 2021, 8842195.
81 Yan W, Wu Z, Niu F, et al. Construction and Building Materials, 2020, 259, 120405.
82 Jacobsen S, Sellevold E J, Matala S. Cement and Concrete Research, 1996, 26(6), 919.
83 Zhang Y, Zhang W, She W, et al. Ndt & E International, 2012, 47, 177.
84 Chaboche J, Lesne P. Fatigue and Fracture of Engineering Materials and Structures, 1988, 11(1), 1.
85 Pei W Q. Railway Construction Technology, 2014(5), 4 (in Chinese).
裴文强. 铁道建筑技术, 2014(5), 4.
86 Fagerlund G. In: International Conference on Ion and Mass Transport in Cement-based Materials. American Ceramic Society, 2001, pp. 195.
87 Ababneh A N, Xi Y. Evaluation of environmental degradation of concrete in cold regions, ASCE Library, USA, 2006, pp. 1.
88 Yu H, Ma H, Yan K. Construction and Building Materials, 2017, 137(15), 104.
89 Aas-Jakobsen. In: Fatigue of concrete beams and columns. Division of Concrete Structure, Norwegian Institute of Technology, Norway, 1970, pp.1.
90 Li J Y, Cao J G. In:Research and application of durability in hydraulic engineering concrete, Electric Press, China, 2004, pp.140(in Chinese).
李金玉, 曹建国. 水工混凝土耐久性的研究和应用, 中国电力出版社, 2004, pp. 140.
91 Shen H, Lin J. International Journal of Fatigue, 2000, 22(7), 569.
92 Duan A, Tian Y, Dai J G, et al. Materials and Structures, 2014, 47(6), 1025.
93 Li Y, Guo H, Zhou H, et al. Construction and Building Materials, 2022, 345, 128171.
94 Cho T J. International Journal of Railway, 2010, 3(1), 7.
95 Li J, Qiao H, Zhu F. Emerging Materials Research, 2020, 9(1), 70.
96 Chen F, Qiao P. Materials & Structures, 2015, 48(8), 2697.
97 Xiao Q H. Key Engineering Materials, 2013, 525, 153.
98 Qiao P, Chen F. Construction and Building Materials, 2013, 47, 879.
99 Lin C, Ou J P. Applied Mechanics and Materials, 2012, 105, 777.
100 Li H, Zhang M, Ou J. International Journal of Fatigue, 2007, 29(7), 1292.
101 Sain T, Kishen J C. International Journal of Fatigue, 2008, 30(12), 2156.
102 Shisheng S. China Civil Engineering Journal, 1997, 30(4), 35.
103 Shang H, Song Y, Qin L. China Concrete and Cement Products, 2005, 2(9), 11.
104 Tang G, Liu X. Sichuan Building Science, 2007, 33(3), 138.
105 Li J, Xu W, Cao J, et al. Journal of Hydraulic Engineering, 1999, 1(1), 42.
106 Russell R J. Eos, Transactions American Geophysical Union, 1943, 24(1), 125.
107 Zhou W, Zhao C, Liu X, et al. Construction and Building Materials, 2017, 157(30), 117.
108 Nayak S, Lyngdoh G A, Das S. Construction and Building Materials, 2019, 212, 317.
109 Nayak S, Krishnan N A, Das S. Construction and Building Materials, 2019, 201, 246.
110 Lövqvist L, Balieu R, Kringos N. International Journal of Pavement Engineering, 2021, 22(8), 1017.
111 Yang R, Lemarchand E, Fen-Chong T, et al. International Journal of Solids and Structures, 2015, 75, 109.
112 Ng K, Dai Q. Construction and Building Materials, 2014, 50, 266.
113 Liu L, Ye G, Schlangen E, et al. Cement and Concrete Composites, 2011, 33(5), 562.
114 Sleiman S A H, Rhardane A, Alam S Y, et al. Construction and Buil-ding Materials, 2022, 317, 125772.
115 Bullard J W, Stutzman P E. Cement and Concrete Research, 2006, 36, 1548.
116 Rhardane A, Sleiman S H, Alam S Y, et al. Construction and Building Materials, 2021, 272, 121838.
117 Liu L, Wu S, Chen H, et al. Cold Regions Science and Technology, 2014, 106, 141.
118 Liu L, Shen D, Chen H, et al. Cement and Concrete Composites, 2014, 53, 1.
119 Zhu X, Chen X, Zhang N, et al. Construction and Building Materials, 2021, 288, 123110.
120 Esmaeeli H S, Farnam Y, Bentz D P, et al. Materials and Structures, 2017, 50(1), 1.
121 Peng R, Qiu W, Teng F. Ocean Engineering, 2022, 248, 110867.
122 Bažant Z P, Oh B H. Journal of Engineering Mechanics, 1985, 111(4), 559.
123 Bažant Z P, Tabbara M R, Kazemi M T, et al. Journal of Engineering Mechanics, 1990, 116(8), 1686.
124 Mohamed A R, Hansen W. Materials Journal, 1999, 96(2), 196.
125 Gurson A L. Journal of Engineering Materials and Technology, 1977, 99, 2.
126 Li Y, Qiang S, Xu W, et al. Construction and Building Materials, 2021, 276, 122205.
127 Li B, Mao J, Shen W, et al. Construction and Building Materials, 2019, 211, 1050.
128 Mao J Z, Wang H Y, Zhang Z Y, et al. Key Engineering Materials, 2010, 850(417), 133.
129 Qin X C. Research of freeze-thaw mechanism and durability evaluation of concrete and prestressed concrete. Ph. D. Thesis, Southeast University, China, 2017(in Chinese).
秦晓川. 混凝土及预应力混凝土冻融机理及耐久性评估研究. 博士学位论文, 东南大学, 2017.
130 Peng R, Qiu W, Teng F. Construction and Building Materials, 2020, 250, 118573.
131 Li H, Zhang Y, Guo H. Coatings, 2021, 11(10), 1198.
132 Xu P, Wu Y, Huang L, et al. Applied Sciences, 2021, 11(13), 5903.
133 Tian Y, Lai Y, Qin Z, et al. Solar Energy, 2022, 231, 970.
134 Jin S, Zheng G, Yu J. Construction and Building Materials, 2020, 257, 119434.
135 Ng K, Sun Y, Dai Q, et al. Construction and Building Materials, 2014, 50, 478.
136 Peng R, Qiu W, Jiang M. Composite Structures, 2022, 301, 116224.
[1] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[2] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[3] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[4] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[5] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[8] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[9] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[10] 冷建成, 赵雷, 张新, 许宏伟. 基于磁记忆在线监测的再制造毛坯疲劳寿命预测方法[J]. 材料导报, 2025, 39(2): 23040250-6.
[11] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[12] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[13] 何涛, 马国政, 李海庆, 石佳东, 李振, 郭伟玲, 邢志国. 固体润滑齿轮接触疲劳寿命及影响因素研究现状[J]. 材料导报, 2025, 39(1): 23120091-15.
[14] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[15] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed