Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 103-108    https://doi.org/10.11896/j.issn.1005-023X.2017.023.014
  专题栏目:超高性能混凝土及其工程应用 |
超高性能混凝土动态冲击拉伸性能研究*
张文华1, 2, 3, 陈振宇1
1 南京林业大学土木工程学院,南京210037;
2 江苏省建筑科学研究院,南京210008;
3 东南大学土木工程学院,南京211189
A Study of the Dynamic Tensile Property of Ultra-high Performance Concrete
ZHANG Wenhua1, 2, 3, CHEN Zhenyu1
1 School of Civil Engineering, Nanjing Forestry University, Nanjing 210037;
2 Jiangsu Research Institute of Building Science, Nanjing 210008;
3 School of Civil Engineering, Southeast University, Nanjing 211189
下载:  全 文 ( PDF ) ( 1678KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能混凝土(Ultra-high performance concrete,UHPC)作为一种具有超高物理力学性能的新型建筑材料,能显著提高军事防护工程的抗爆炸冲击能力,对保障防护工程中人员的生命安全具有重要意义。为揭示爆炸冲击波在防护工程自由面引起的动态拉伸破坏行为,利用霍普金森压杆装置(Split Hopkinson pressure bar,SHPB)对UHPC进行动态冲击拉伸试验,系统研究了粗集料种类、钢纤维掺量以及应变率对UHPC动态冲击拉伸性能的影响规律。结果表明:粗集料种类对UHPC的动态冲击拉伸强度有较显著的影响,相比于花岗岩和铁矿石,玄武岩粗集料对动态冲击拉伸性能的提高更为明显; UHPC的动态冲击拉伸强度会随着钢纤维掺量的增加而显著提高,但钢纤维掺量对UHPC动态拉伸强度的贡献存在4% 的临界值;此外,UHPC表现出明显的应变率效应,当应变率为 7~50 s-1 时,其效应最为显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文华
陈振宇
关键词:  超高性能混凝土  动态冲击拉伸性能  应变率效应  粗集料  钢纤维    
Abstract: As a kind of construction material with superior mechanical properties, ultra-high performance concrete (UHPC) can notably enhance the impact resistance of properties, which is of great significance to the life security under the military protective engineering. To reveal the principle of dynamic tensile fracture caused by explosive shock wave on the free surface of protective engineering, this paper, which is based on a series of spallation experiments using the split Hopkinson pressure bar, studies the impact of coarse aggregate type, content of steel fiber and strain rate on dynamic tensile property of UHPC. Results showed that coarse aggregate type has a marked influence on spall strength. Compared with that of granite and iron ore, the impact of basalt is the most remarkabale. Besides, with the increase of steel fiber content, the dynamic tensile property is improved notably. However, there exists a limitation on the contribution to the spall strength, approximately 4%. As to the impact of the strain rate, UHPC displays a remarkable strain rate effect, especially when the strain rate varies from 7 s-1 to 50 s-1.
Key words:  ultra-high performance concrete    dynamic tensile property    strain rate effect    coarse aggregate    steel fiber
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  O347.3  
基金资助: *国家自然科学基金面上项目(51678309); 江苏省自然科学基金面上项目(BK20161529); 中国博士后基金面上项目(2016M600351); 江苏省博士后基金面上项目(1601028B)
作者简介:  张文华:1982年生,博士,副教授,主要研究方向为超高性能混凝土动态力学行为 E-mail:zhangwenhua2009@163.com
引用本文:    
张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
ZHANG Wenhua, CHEN Zhenyu. A Study of the Dynamic Tensile Property of Ultra-high Performance Concrete. Materials Reports, 2017, 31(23): 103-108.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.014  或          https://www.mater-rep.com/CN/Y2017/V31/I23/103
1 钱七虎, 刘光寰, 徐飞,等. 高技术局部战争条件下的工程防护[M]∥钱七虎院士论文选集. 北京:科学出版社, 2007.
2 葛鹏. 简述常规武器、核武器及其对防护工程的破坏效应[J]. 中小企业管理与科技(下旬刊), 2012(9): 312.
3 Wang X H, Wei D F, Wang M Y, et al. Development and countermeasure of protective engineering under information war[J]. J PLA University of Science and Technology(Natural Science), 2004,5(6): 37(in Chinese).
汪新红,魏登仿,王明洋,等. 信息化战争条件下防护工程的发展与对策[J]. 解放军理工大学学报(自然科学版), 2004,5(6): 37.
4 Chen B C, Ji T, Huang Q W, et al. Review of research on ultra-high performance concrete[J]. J Architecture Civil Eng, 2014,31(3): 1(in Chinese).
陈宝春,季韬,黄卿维,等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014,31(3): 1.
5 Wang D H, Shi C J, Wu L M. Research and applications of ultra-high performance concrete (UHPC) in China[J]. Bull Chinese Ceram Soc, 2016,35(1): 141(in Chinese).
王德辉,史才军,吴林妹. 超高性能混凝土在中国的研究和应用[J]. 硅酸盐通报, 2016,35(1): 141.
6 红亮. 新型超高性能混凝土的力学性能及工程运用研究[J]. 企业导报, 2012(23): 252.
7 赵筠,廉慧珍. 关于超高性能混凝土(UHPC)的问答[J]. 混凝土世界, 2016(4): 98.
8 Dong J K, Park S H, Ryu G S, et al. Comparative flexural behavior of Hybrid ultra high performance fiber reinforced concrete with different macro fibers[J]. Construction Building Materials, 2011, 25(11):4144.
9 钱七虎. 战略防护工程面临的核钻地弹威胁及连续介质力学模型的不适用性[C]∥第五届全国工程结构安全防护学术会议.南京,2007.
10 Lai J Z. Dynamic mechanical behaviour of ultra-high performance fiber reinforced concretes[J]. J Wuhan University of Technology(Materials Science Edition), 2008,23(6): 938.
11 Lai J Z, Sun W. The spalling behaviour of reactive powder concrete[J]. Eng Mechan, 2009,26(1): 137(in Chinese).
赖建中,孙伟. 活性粉末混凝土的层裂性能研究[J]. 工程力学,2009,26(1): 137.
12 Lai J Z, Sun W, Jiao C J, et al. Dynamic mechanical properties of ecological reactive powder concrete[J].Ind Construction, 2004,34(12): 63(in Chinese).
赖建中,孙伟,焦楚杰,等. 生态型RPC材料的动态力学性能[J]. 工业建筑, 2004,34(12): 63.
13 Rong Z D, Sun W. Influences of coarse aggregate on dynamic mechanical behaviors of ultrahigh-performance cementitious composites[J].Explosion Shock Waves, 2009,29(4): 361(in Chinese).
戎志丹,孙伟. 粗集料对超高性能水泥基材料动态力学性能的影响[J]. 爆炸与冲击, 2009,29(4): 361.
14 Zhu C Y, Zhang Y S, Gao J M. Preparation of the ultra-high performance concrete and study on its physical and mechanical properties[J]. China High Concr Cem Products, 2010(1): 13(in Chinese).
朱春银,张云升,高建明. 超高性能混凝土的制备与物理力学性能研究[J]. 混凝土与水泥制品, 2010(1): 13.
15 佘伟,张云升,戎志丹,等. 生态型超高性能混凝土的制备、流动性能与力学行为[J]. 商品混凝土, 2009(4): 29.
16 Az-Rubio F D, Pérez J R, Gálvez V S. The spalling of long bars as a reliable method of measuring the dynamic tensile strength of ceramics[J]. Int J Impact Eng, 2002,27(2):161.
17 Klepaczko J R, Brara A. An experimental method for dynamic tensile testing of concrete by spalling[J]. Int J Impact Eng, 2001,25(4):387.
18 Guo X. Stress wave propagation in concrete structure under impact loading[D].Changsha: National University of Defense Technology,2010(in Chinese).
郭弦. 冲击作用下混凝土中应力波传播规律研究[D]. 长沙:国防科学技术大学, 2010.
19 Tian H W, Guo W G.Validity analysis of sample strain measurement in dynamic tensile experiment[J]. J Experimental Mechan, 2008,23(5): 403(in Chinese).
田宏伟,郭伟国. 动态拉伸试验中试样应变测试的有效性分析[J]. 实验力学, 2008,23(5): 403.
20 Cao R K. Study on mix proportion design of ultra-high performance concrete based on CPM model and specific strength[D]. Changsha:Hunan University,2008(in Chinese).
曹荣奎. 基于CPM模型和比强度法的超高性能混凝土配合比设计研究[D]. 长沙:湖南大学, 2008.
21 Zhang Lei. The study on the spall strength of concrete[D]. Hefei: Unversity of Science and Technology of China,2006(in Chinese).
张磊. 混凝土层裂强度的研究[D]. 合肥:中国科学技术大学, 2006.
22 Sun Q L, Wang L M. Uniaxial tensile test method for steel fibre concrete[J]. Shanxi Architecture, 2009,35(25): 1(in Chinese).
孙启林,王利民. 钢纤维混凝土单轴拉伸实验方法[J]. 山西建筑, 2009,35(25): 1.
23 Chen B S, Xiao Y, Huang Z Y, et al. Experimental study on the spalling strength of fiber reactive powder concrete[J]. J Hunan University(Natural Sciences), 2009, 36(7): 12(in Chinese).
陈柏生,肖岩,黄政宇,等. 钢纤维活性粉末混凝土动态层裂强度试验研究[J]. 湖南大学学报(自然科学版), 2009, 36(7): 12.
24 黄承义,王春菱. 横向惯性在准脆性材料动态响应中的影响[C]∥第十三届全国物理力学学术会议. 湘潭, 2014.
25 Ren X T, Zhou T Q, Zhong F P, et al. Expermental study for the dynamic mechanical behavior of granite[J]. J Experimental Mechan, 2010,25(6): 723(in Chinese).
任兴涛,周听清,钟方平,等. 花岗岩动态力学性能的实验研究[J]. 实验力学, 2010,25(6): 723.
[1] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[2] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[3] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[4] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[5] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[6] 李超, 周梅, 李杨, 张凯, 郭凌志. 固废粗集料平均弹性模量与混凝土弹性模量的相关性[J]. 材料导报, 2024, 38(4): 22050271-8.
[7] 郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
[8] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[9] 陈聪聪, 吴泽媚, 胡翔, 史才军. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 23030088-11.
[10] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[11] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[12] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
[13] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[14] 吴琛, 储福玮, 龚明子, 曾志攀. 免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究[J]. 材料导报, 2023, 37(24): 23010119-8.
[15] 边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed