High-throughput Screening Methods for Ultrasensitive TiO2 Sensing Materials to Low-concentration Hydrogen Detection
MA Yanjia1,2, YANG Li1, GUO Shenghui1, HOU Ming1, ZHU Ye1, ZHANG Deqi1, GAO Jiyun1,3,*
1 School of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China 2 Grikin Advanced Materials Co., Ltd., Beijing 102200, China 3 School of Chemistry and Environment, Yunnan Minzu University, Kunming 650504, China
Abstract: With the strategy of combinatorial materials science, 121 types of TiO2 gas-sensitive material films decorated with rare and noble metals were prepared rapidly via the parallel material synthesis platform and characterized by high-throughput screening effectly. The micromorphology of samples was analyzed by means of X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and energy dispersive spectrometer (EDS). The screening result indicates that the response of TiO2 decorated with 0.5mol% Eu, 0.1mol% Gd, 0.1mol% V, 0.1mol% Rb, 0.5mol% Pt and 0.4mol% Pd can reach 334, 192, 1 074,1 120, 62 778 and 39 643 at 350 ℃ to 1 000×10-6 H2, respectively. Among them, the concentration detection limit of TiO2-0.5mol% Pt can be to 2×10-6 (0.002‰), while the response of TiO2-0.4mol% Pd is 15 at 50 ℃ to 1 000×10-6 H2. It is founded that the screening materials have the good selectivity and long-term stability. The materials have broad application prospects in low-concentration hydrogen detection fields such as hydrogen energy storage and transportation safety monitoring and early warning of battery failure in the future.
1 Yao Z W, Zhang T Y, Meng X, et al. Chinese Journal of Sensors and Actuators, 2019, 32(6), 822(in Chinese). 姚志伟, 张覃轶, 孟鑫, 等. 传感技术学报, 2019, 32(6), 822. 2 Yang M Y, Niu P J, Ning P F, et al. Transducer and Microsystem Technologies, 2023, 42(1), 1(in Chinese). 杨孟宇, 牛萍娟, 宁平凡, 等. 传感器与微系统, 2023, 42(1), 1. 3 Li F, Dong S H, Chen L, et al. Mechanics in Engineering, 2023(2), 1(in Chinese). 李凤, 董绍华, 陈林, 等. 力学与实践, 2023(2), 1. 4 Noeul K, Ho C H, Youngho K, et al. International Journal of Hydrogen Energy, 2023, 48(3), 1234. 5 Kuru C, Choi D, Kargar A, et al. Nanotechnology, 2016, 27(19), 1. 6 Liu Y, Hao L, Gao W, et al. Sensors and Actuators B:Chemical, 2015, 211(1), 537. 7 Xu Y, Tan Y, Xia L, et al. Jiangxi Chemical Industry, 2022, 38(6), 1(in Chinese). 徐瑶, 谭粤, 夏莉, 等. 江西化工, 2022, 38(6), 1. 8 Zhang Z, Wang S H, Zhao Y X, et al. Inorganic Chemicals Industry, 2021, 53(2), 105(in Chinese). 张正, 王少华, 赵亚许, 等. 无机盐工业, 2021, 53(2), 105. 9 Zhang J Y, HARI B, Zhang Z Y. Inorganic Chemicals Industry, 2021, 53(12), 67(in Chinese). 张静宜, 孟哈日巴拉, 张战营. 无机盐工业, 2021, 53(12), 67. 10 Varghese O K, Dawei G, Maggie P, et al. Sensors and Actuators B:Chemical, 2003, 93(1), 338. 11 Fujian R, Liang H, Yunhan L, et al. Sensors and Actuators B:Chemical, 2010, 148(1), 195. 12 Hyunah K, Yuna L, Sunyong H, et al. Sensors & Actuators B:Chemical, 2017, 241, 985. 13 Yunhan L, Fujian R, Jiayou F. International Journal of Hydrogen Energy, 2016, 41(18), 7691. 14 Chomkiticha W, Tamaekong N, Liewhiran C, et al. Engineering Journal, 2012, 16(3), 135. 15 Chen W, Xiong Y, Li Y H, et al. International Journal of Hydrogen Energy, 2016, 41(4), 3307. 16 Frantzen A, Scheidtmann J, Frenzer G, et al. Angewandte Chemie-International Edition English, 2004, 43, 752. 17 Siemons M, Leifert A, Simon U. Advanced Functional Materials, 2007, 17, 2189. 18 Wang J, Gao S, Zhang C, et al. Sensors and Actuators B:Chemical, 2018, 276, 189. 19 Briceo G, Chang H, Sun X, et al. Science, 1995, 270, 273. 20 Brocchin S, James K, Kohn J. Journal of American Chemical Society, 1997, 119, 4553. 21 Arnold H, Hans-Werner S. Angewandte Chemie-International Edition English, 1998, 37, 2644. 22 Tian H, Ma J F, Li K, et al. Ceramics International, 2009, 35(3), 1289. 23 Zhang H, Liu Z, Yang J, et al. Materials Research Bulletin, 2014, 57, 260. 24 Liu G, Zhu L, Yu Y, et al. Journal of Alloys and Compounds, 2021, 858, 157638. 25 Kolmakov A, Klenov D O, Lilach Y, et al. Nano Letters, 2005, 5, 667. 26 Ionescu R, Llobet E, Vilanova X, et al. Analyst, 2002, 127, 1237. 27 Bai S, Hu J, Li D, et al. Journal of Materials Chemistry, 2011, 21, 12286. 28 You L, Sun Y F, Ma J, et al. Sensors and Actuators B:Chemical, 2011, 157, 401. 29 Lewera A, Timperman L, Roguska A, et al. Journal of Physical Chemistry C, 2011, 115(41), 20153. 30 Ohmori T, Nodasaka Y, Enyo M. Journal of Electroanalytical Chemistry, 1990, 281(1), 331. 31 Basu S, Basu P K. Journal of Sensors, 2009, 29(12), 777.