Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 20120025-9    https://doi.org/10.11896/cldb.20120025
  无机非金属及其复合材料 |
改性TiO2的光生阴极保护研究进展
龙武剑1,2, 明高林1,2, 董必钦1,2, 符显珠3, 骆静利3, 施诗1,2,*
1 深圳大学土木与交通工程学院,广东 深圳 518060
2 广东省滨海土木工程耐久性重点实验室,广东 深圳 518060
3 深圳大学材料学院,广东 深圳 518060
Research Advances on Modified Titanium Dioxide for Photogenerated Cathodic Protection
LONG Wujian1,2, MING Gaolin1,2, DONG Biqin1,2, FU Xianzhu3, LUO Jingli3, SHI Shi1,2,*
1 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
2 Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen 518060, Guangdong, China
3 College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
下载:  全 文 ( PDF ) ( 4980KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属材料的广泛应用大大推动了社会的进步,但金属腐蚀现象的频繁发生也给人类生活及安全带来巨大损失与危害,并引发了一系列生态问题。常用的腐蚀防护方法包括合理选材、涂层技术、添加缓蚀剂以及运用电化学保护技术。其中,电化学保护技术之一的阴极保护广泛应用于金属腐蚀防护,但传统的阴极保护技术(如外加电流阴极保护)需要定期维护且监控、电源设备复杂,而牺牲阳极保护则需定期更换阳极金属且驱动电压低,具有一定的局限性。近20年来,光生阴极保护技术作为一种新兴的阴极保护技术,引起了研究者的广泛关注;其利用半导体作为光电中心、通过转换光辐射实现对被保护金属的光电化学保护,是一种真正高效、绿色环保的腐蚀防护技术。光生阴极保护的关键在于半导体材料的光电转换能力,以及其受光激发产生的光生电子向被保护金属表面转移并富集的能力。TiO2是一种光电转换效率较高、无污染、稳定性好且耐光腐蚀的半导体材料,在光催化、光电转换以及光生阴极保护等领域具有广阔的应用前景。但TiO2禁带宽度较宽、可见光响应能力低、光生载流子复合速率快、光电转换效率较低,这限制了其为金属材料持续提供阴极保护的能力。因此,对TiO2进行改性研究,以突破TiO2在光生阴极保护领域的应用瓶颈,成为了近期的研究热点。研究者们充分利用不同改性方法的优势,大幅提升了TiO2的光电转换效率,并在如何实现暗态环境下持续有效的光生阴极保护这一瓶颈上有了很大的突破。
本文从光生阴极保护原理出发,从金属沉积、离子掺杂、半导体复合(g-C3N4、Bi2S3、石墨烯等)、量子点敏化等改性手段着手,以TiO2的光电性能及光生阴极保护效率提升为落脚点,重点评述并总结了不同改性TiO2的光生阴极保护作用及发展,并回顾了笔者团队关于光电催化材料及腐蚀防护的研究进展与成果,对钢筋的光生阴极保护进行了可行性论证,最后对今后光生阴极保护的研究方向及研究重点提出了展望,为改性TiO2半导体在光生阴极保护中的广泛应用提供有价值的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙武剑
明高林
董必钦
符显珠
骆静利
施诗
关键词:  TiO2  改性  光电性能  光生阴极保护  量子点敏化    
Abstract: The extensive application of metal materials has greatly promoted the social progress. However, the high-frequency metal corrosion causes huge losses and harm to human life and safety, which triggers a series of ecological problems as well. Generally, corrosion protection measures have been carried out, such as materials selection, coating, corrosion inhibitor and electrochemical protection. Cathodic protection, one of the electrochemical protection techniques, has been widely used in metal corrosion protection, yet there are some limitations for traditional cathodic protection technologies. As for traditional cathodic protection technologies, current-impressed cathodic protection requires regular maintenance, monitoring and complicated devices, while sacrificial anode cathodic protection with low output needs replacing anode metal regularly. In the past two decades, photogenerated cathodic protection, a novel approach of cathodic protection technology, has attracted a great deal of attention and confirmed to be truly efficient and eco-friendly, in which semiconductors serve as photoelectric center to transform solar radiation into electricity. The photoelectric conversion efficiency of semiconductor materials is focused on, as well as the ability of photogenerated electrons transferring and enriching onto the protected metal surface. TiO2 is a kind of photoelectric pollution-free semiconductor material, which shows good stability and excellent photocorrosion resistance. There are broad application prospects for TiO2 in the fields of photocatalytic activity, photoelectric conversion, photogenerated cathodic protection and others. However, the characteristics of wide band gap, poor photoresponse ability, high photocarrier recombination velocity and inefficient photoelectric conversion lead to insufficiency in offering sustained protection. Therefore, breaking through bottlenecks of TiO2 application in photogenerated cathodic protection by effective modification has recently received significant attention. Different modification methods for TiO2 to improve photoelectric conversion efficiency have been studied carefully. A great breakthrough in the substantiation of photogenerated cathodic protection in darkness has been performed.
This review, proceeding from the mechanism of photogenerated cathodic protection, systematically introduces modification methods including metal deposition, ion doping, semiconductor compounding (g-C3N4, Bi2S3, graphene, etc.) and quantum dots sensitization. Advances of different modification methods of TiO2 in improving efficiency of photoelectric performance and photogenerated cathodic protection are emphatically discussed. The research advances and achievements of the author's team on photocatalytic materials and corrosion protection are reviewed. In addition, the feasibility of cathodic protection for reinforcement is demonstrated. Finally, future research direction and research emphases of photogenerated cathodic protection are proposed. This review provides new approaches for the wide application of modified TiO2 in photogenerated cathodic protection in a sustainable way.
Key words:  TiO2    modification    photoelectrical performance    photogenerated cathodic protection    quantum dots sensitization
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TB321  
基金资助: 国家自然科学基金(U2006223;51778368);深圳市科技计划项目(JCYJ20180305124844894; JCYJ20190808151011502)
通讯作者:  *sshi.eng@outlook.com   
作者简介:  龙武剑,深圳大学土木与交通工程学院教授、博士研究生导师。2002年8月本科毕业于法国国立图卢兹第三大学,2004年8月硕士毕业于法国高等师范大学,2008年7月于加拿大布鲁克大学取得土木工程博士学位。2009年9月进入深圳大学土木与交通工程学院,主要从事可持续土木工程材料-结构一体化的相关研究。近五年在Cement and Concrete Composites, Composites Part B-Engineering, ACI Materials Journal, Construction and Building Material 等权威期刊发表论文60余篇。
施诗,深圳大学土木与交通工程学院副研究员。2009年7月本科毕业于北京科技大学材料科学与工程学院材料化学系,2015年3月在日本北海道大学取得博士学位,2015至2019年分别在美国威斯康星大学麦迪逊分校工程物理系、南方科技大学机械与能源工程系进行研究工作。2019年进入深圳大学土木与交通工程学院,主要从事光电半导体材料及光电化学阴极保护方向的研究工作。近五年在Materials Science and Engineering A, Acta Materialia, Nature Communications等权威期刊上发表论文10余篇。
引用本文:    
龙武剑, 明高林, 董必钦, 符显珠, 骆静利, 施诗. 改性TiO2的光生阴极保护研究进展[J]. 材料导报, 2022, 36(15): 20120025-9.
LONG Wujian, MING Gaolin, DONG Biqin, FU Xianzhu, LUO Jingli, SHI Shi. Research Advances on Modified Titanium Dioxide for Photogenerated Cathodic Protection. Materials Reports, 2022, 36(15): 20120025-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120025  或          http://www.mater-rep.com/CN/Y2022/V36/I15/20120025
1 Koch G, Varney J, Thompson N, et al. NACE International, 2016, 216, 2.
2 Wang F P, Jing H M, Xin C M. Corrosion electrochemistry, Chemical Industry Press, China, 2017(in Chinese).
王凤平, 敬和民, 辛春梅. 腐蚀电化学, 化学工业出版社, 2017.
3 Khan A, Qurashi A, Badeghaish W, et al. Sensors, 2020, 20(22),6583.
4 Baeckmann W V, Schwenk W, Prinz W. Handbook of cathodic corrosion protection, Gulf Professional Publishing, USA, 1997.
5 Chen Z Y. Photochemical cathodic protection mechanism for metal corrosion, Science Press, China, 2017(in Chinese).
陈卓元. 金属腐蚀的光电化学阴极保护机理, 科学出版社, 2017.
6 Ding D, Hou Q, Su Y, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(13), 12710.
7 Wang X, Lei J, Shao Q, et al. Nanotechnology, 2019, 30(4), 45710.
8 Di Li, Haneda H. Journal of Photochemistry & Photobiology, A: Chemistry, 2003, 155(1-3), 171.
9 Yang X, Zhou L, Cao G, et al. Optik, 2020, 202, 163573.
10 Aliahmad M, Nasiri Moghaddam N. Materials Science-Poland, 2013, 31(2), 264.
11 Kazuhiro S, Atsushi N, Takeo A, et al. The Journal of Physical Chemistry B, 2006, 110(23), 11352.
12 Zhou X, Wu J, Li Q, et al. Chemical Engineering Journal, 2017, 330, 294.
13 Santhi K, Rani C, Karuppuchamy S. Journal of Materials Science: Materials in Electronics, 2016, 27(5), 5033.
14 Scuderi V, Amiard G, Boninelli S, et al. Materials Science in Semiconductor Processing, 2016, 42, 89.
15 Carey J H, Lawrence J, Tosine H M. Water Chemistry Section Canada Centre for Inland Waters, 1976, 16,697.
16 Fujishima A, Honda K. Nature, 1972, 238(5358), 37.
17 Maeda K, Xiong A, Yoshinaga T, et al. Angewandte Chemie International Edition, 2010, 49(24), 4096.
18 Liu G, Wang L, Yang H G, et al. Journal of Materials Chemistry, 2010, 20(5), 831.
19 Orooji Y, Ghanbari M, Amiri O, et al. Journal of Hazardous Materials, 2020, 389, 122079.
20 Imokawa T, Fujisawa R, Suda A. Zairyo-to-kankyo, 1994, 43, 482.
21 Ohko Y, Saitoh S, Tatsuma T, et al. Journal of the Electrochemical Society, 2001, 1(148), B24.
22 Li M, Luo S, Wu P, et al. Electrochimica Acta, 2005, 50(16-17), 3401.
23 Abdel-Mageed A M, Wiese K, Parlinska-Wojtan M, et al. Applied Catalysis B: Environmental, 2020, 270, 118846.
24 Portillo-Vélez N S, Zanella R. Chemical Engineering Journal, 2020, 385, 123848.
25 Zhu D, Long L, Sun J, et al. Applied Surface Science, 2020, 504, 144329.
26 Li H, Wang X, Wei Q, et al. Nanotechnology, 2017, 28(22), 225701.
27 Li J, Yun H, Lin C. ECS Transactions, 2019, 3(43), 1.
28 Fernandes S, Esteves Da Silva J C G, Pinto Da Silva L. Materials, 2020, 13(7), 1487.
29 Wu D, Li C, Zhang D, et al. Journal of Rare Earths, 2019, 37(8), 845.
30 Belver C, Bellod R, Fuerte A, et al. Applied Catalysis B: Environmental, 2006, 65(3-4), 301.
31 Sadeghzadeh-Attar A. Journal of Advanced Ceramics, 2020, 9(1), 107.
32 Jahdi M, Mishra S B, Nxumalo E N, et al. Applied Catalysis B: Environmental, 2020, 267, 118716.
33 Sun M, Chen Z, Yu J. Electrochimica Acta, 2013, 109, 13.
34 Momeni M M, Ghayeb Y, Moosavi N. Nanotechnology, 2018, 29(42), 425701.
35 Li S, Fu J. Corrosion Science, 2013, 68, 101.
36 Qiao L, Xie F, Xie M, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(8), 2109.
37 Li J, Lin C, Lai Y, et al. Surface and Coatings Technology, 2010, 205(2), 557.
38 Arman S Y, Omidvar H, Tabaian S H, et al. Surface and Coatings Technology, 2014, 251, 162.
39 Xuan X, Li L, Wang F H. Journal of Chinese Society for Corrosion and Protection, 2020, 40(2), 123.
40 Chuang C, Lai Y, Hou C, et al. ACS Applied Energy Materials, 2020, 3(4), 3902.
41 Zhou M J, Zeng Z O, Zhong L, et al. Jornal of Inorganic Materials, 2009, 24(3), 525(in Chinese).
周民杰, 曾振欧, 钟理, 等. 无机材料学报, 2009, 24(3), 525.
42 Ziadi I, Alves M M, Taryba M, et al. Bioelectrochemistry, 2020, 132, 107413.
43 Wang X, Guan Z, Jin P, et al. Corrosion Science, 2019, 157, 247.
44 Guan Z, Wang H, Wang X, et al. Corrosion Science, 2018, 136, 60.
45 Guan Z, Wang X, Jin P, et al. Corrosion Science, 2018, 143, 31.
46 Hu J, Guan Z, Liang Y, et al. Corrosion Science, 2017, 125, 59.
47 Yang Y, Cheng Y F. Corrosion Science, 2020, 164, 108333.
48 Liu Y, Zhao C, Wang X, et al. Materials Research Bulletin, 2020, 124, 110751.
49 Yang Y, Zhang W, Xu Y, et al. Applied Surface Science, 2019, 494, 841.
50 Feng C, Chen Z, Jing J, et al. Corrosion Science, 2020, 166, 108441.
51 Li H, Li Y, Wang X, et al. Journal of Alloys and Compounds, 2019, 771, 892.
52 Chen Y, Jiang D, Li L, et al. Nanotechnology, 2020, 31(17), 174002.
53 Li H, Zhou L, Wang L, et al. Physical Chemistry Chemical Physics, 2015, 17(26), 17406.
54 Liang D, Huang Y, Wu F, et al. Applied Surface Science, 2019, 487, 322.
55 Papailias I, Todorova N, Giannakopoulou T, et al. Catalysis Today, 2017, 280, 37.
56 Gündoğmuş P, Park J, Öztürk A. Ceramics International, 2020, 46(13), 21431.
57 Zhou D, Yu B, Chen Q, et al. Materials Research Bulletin, 2020, 124, 110757.
58 Kong X, Li J, Yang C, et al. Separation and Purification Technology, 2020, 248, 116924.
59 Du L, Jin C, Cheng Y, et al. Journal of Alloys and Compounds, 2020, 842, 155612.
60 Kumar A, Khan M, He J, et al. Applied Catalysis B: Environmental, 2020, 270, 118898.
61 Noothongkaew S, Thumthan O, An K. Materials Letters, 2018, 218, 274.
62 Xu D, Yang M, Liu Y, et al. Journal of Alloys and Compounds, 2020, 822, 153685.
63 Li H, Wang X, Wei Q, et al. Nanoscale Research Letters, 2017, 12(1),80.
64 Du R G, Hu J, Jin P. ECS Meeting Abstracts, 2020, 1, 985.
65 Wu H L, Li X B, Tung C H, et al. Advanced Science, 2018, 5(4), 1700684.
66 Su S. Photoelectrochemcal performance study of quantum dots sensitized oxide photoanode. Ph.D. Thesis, Jilin University, China, 2018(in Chinese).
苏适. 量子点敏化氧化物光阳极光电化学性能提升研究. 博士学位论文, 吉林大学, 2018.
67 Chi C, Chen P, Lee Y, et al. Journal of Materials Chemistry, 2011, 21(43), 17534.
68 Zhang J, Du R, Lin Z, et al. Electrochimica Acta, 2012, 83, 59.
69 Seabold J A, Shankar K, Wilke R H T, et al. Chemistry of Materials, 2008, 20(16), 5266.
70 Guan Z, Jin P, Liu Q, et al. Journal of Alloys and Compounds, 2019, 797, 912.
71 Boonserm A, Kruehong C, Seithtanabutara V, et al. Applied Surface Science, 2017, 419, 933.
72 Zhang J, Hu J, Zhu Y, et al. Corrosion Science, 2015, 99, 118.
73 Stratfull R F. Materials Performance, 1974, 4(13), 24.
74 Wang X, Xi X, Huo G, et al. Journal of Energy Chemistry, 2021, 53, 49.
75 Xi X, Wang X, Fan Y, et al. Journal of Power Sources, 2021, 482, 228981.
76 Hao J, Liu J, Wu D, et al. Applied Catalysis B: Environmental, 2021, 281, 119510.
77 Hong S, Wiggenhauser H, Helmerich R, et al. Corrosion Science, 2017, 114, 123.
78 Dong B Q, Zhuang Z T, Gu Z T, et al. Journal of Shenzhen University Science and Engineering, 2019, 36(3), 268(in Chinese).
董必钦, 庄钊涛, 顾镇涛, 等. 深圳大学学报(理工版), 2019, 36(3), 268.
79 Zheng F, Shi G Y, Dong B Q, et al. Journal of the Chinese Ceramic Society, 2018, 46(8), 1081(in Chinese).
郑帆, 史桂昀, 董必钦, 等. 硅酸盐学报, 2018, 46(8), 1081.
[1] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[2] 张理元, 阳金菊, 尤佳. 以PVP为软模板构建的层状介孔TiO2及其光催化性能[J]. 材料导报, 2023, 37(4): 21080004-6.
[3] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[4] 魏铭, 张长森, 王旭, 诸华军, 焦宝祥, 孙楠. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 21020065-10.
[5] 张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
[6] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[7] 符明君, 张勇, 张耿飞, 王凯, 贾致远, 王娜. 钼及钼合金改性硅化物高温抗氧化涂层研究现状[J]. 材料导报, 2023, 37(3): 21030219-8.
[8] 杨薛明, 胡宗杰, 王炜晨, 刘强, 王帅. 利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能[J]. 材料导报, 2023, 37(2): 21110039-6.
[9] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[10] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[11] 李世杰, 王智辉, 代琳心, 李振瑞, 王佳军, 马建锋, 刘杏娥. 银/尿素改性竹质活性炭的制备及甲醛净化与抗菌性能[J]. 材料导报, 2022, 36(Z1): 22030103-6.
[12] 王秀超, 秦莹莹, 郭红革. 生物基可降解包装薄膜的研究进展[J]. 材料导报, 2022, 36(Z1): 21070279-8.
[13] 张子健, 姜锋, 于春晓. 长碳链聚酰胺PA1012的改性研究进展[J]. 材料导报, 2022, 36(Z1): 21100088-6.
[14] 王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
[15] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed