Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 1-14    https://doi.org/10.11896/j.issn.1005-023X.2017.09.001
  专题栏目:二维材料 |
二维纳米材料MXene的研究进展*
郑伟1, 孙正明1, 2, 张培根1, 田无边1, 王英1, 张亚梅1
1 东南大学材料科学与工程学院,南京 210000;
2 产业技术综合研究所(AIST),筑波305-8569
Research Progress on MXene, Two Dimensional Nano-materials
ZHENG Wei1, SUN Zhengming1, 2, ZHANG Peigen1, TIAN Wubian1, WANG Ying1, ZHANG Yamei1
1 School of Materials Science and Engineering, Southeast University, Nanjing 210000;
2 National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569
下载:  全 文 ( PDF ) ( 3072KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 MXene是一类新型碳/氮化物二维纳米层状材料,一般是利用化学刻蚀的手段通过选择性刻蚀掉前驱体MAX相中的A原子层而得到。其通式可表示为Mn+1XnTx,其中M代表早期过渡族金属,X代表碳和/或氮,Tx代表MXene在刻蚀过程中产生的附着在其表面的官能团(-OH、-F、=O、等)。采用一定的手段将多层MXene剥落,可获得类石墨烯形貌的单层MXene。MXene除了具备传统二维材料的性能外,还兼具良好的导电性、亲水性、透光性、柔韧性以及能量储存性能,在复合材料、润滑剂、环境污染治理、电池、电容器、催化、传感器、抗菌等领域具有潜在的应用价值。文章总结了MXene的制备、结构、性能和应用等方面的最新成果,并展望了其今后的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑伟
孙正明
张培根
田无边
王英
张亚梅
关键词:  MAX相  MXene  二维材料  刻蚀  制备  应用    
Abstract: MXene is a group of newly emerging two-dimensional (2-D) carbide/nitride materials, which are derived from its precursor MAX phase by selectively extracting A atoms from MX layers using chemical etching method. MXene can be denoted as Mn+1XnTx, where M is an early transition metal, X is carbon and/or nitrogen, and Tx represents surface termination groups (-OH, -F, =O) created in the etching progress. Single layered MXene exfoliated from multi-layered MXene resembles the morphology of graphene. Besides its merits of classical 2-D materials, MXene shows superior characteristics of high electrical conductivity, hydrophilia, transparency, flexibility and energy storage, which confer MXene on promising applications in composites, lubricant, environmental pollution abatement, batteries, capacitors, catalysts, sensors, antibacterial etc. This article presents the latest research results of the synthesis, structure, properties and potential applications for MXene, and research directions for MXene in the future are also predicted.
Key words:  MAX phase    MXene    two dimensional material    etching    preparation    application
出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TB34  
基金资助: *国家自然科学基金 (51272043; 51501038; 51671054)
通讯作者:  孙正明:男,教授,博士研究生导师,研究方向为MAX相材料的科学问题研究与工业应用;环境友好材料与器件的研究与开发E-mail:zmsun@seu.edu.cn   
作者简介:  郑伟:男,1987年生,博士研究生,研究方向为MAX相和MXene的性质及应用 E-mail:zhengwei_huagong@126.com
引用本文:    
郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 二维纳米材料MXene的研究进展*[J]. CLDB, 2017, 31(9): 1-14.
ZHENG Wei, SUN Zhengming, ZHANG Peigen, TIAN Wubian, WANG Ying, ZHANG Yamei. Research Progress on MXene, Two Dimensional Nano-materials. Materials Reports, 2017, 31(9): 1-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.001  或          https://www.mater-rep.com/CN/Y2017/V31/I9/1
20180819211714  图1 MAX相及相应MXene的结构图
[1] Barsoum M W.MAX phases: Properties of machinable ternary carbides and nitrides[M]. New York: Wiley,2013:1.
[2] Sun Z M.Progress in research and development on MAX phases: A family of layered ternary compounds[J]. Int Mater Rev,2013,56(3):143.
[3] Naguib M, Mochalin V N, Barsoum M W, et al.25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Adv Mater,2014,26(7):982.
[4] Guo J, Peng Q, Fu H, et al.Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations[J]. J Phys Chem C,2015,119(36): 20923.
[5] Barsoum M W, El-Raghy T, Farber L, et al.The topotactic transformation of Ti3SiC2 into a partially ordered cubic Ti(C0.67Si0.06) phase by the diffusion of Si into molten cryolite[J]. J Electrochem Soc,1999,146(10):3919.
[6] Emmerlich J, Music D, Eklund P, et al.Thermal stability of Ti3SiC2 thin films[J]. Acta Mater,2007, 55(4):291.
[7] Korenblit Y.Electrochemical characterization of ordered mesoporous carbide-derived carbons[D]. Atlanta, GA: Georgia Institute of Technology,2009.
[8] Naguib M, Kurtoglu M, Presser V, et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv Mater,2011,23(37):4248.
[9] Naguib M, Mashtalir O, Carle J, et al.Two-dimensional transition metal carbides[J]. ACS Nano, 2012,6(2):1322.
[10] Ling Z, Ren C E, Zhao M Q, et al.Flexible and conductive MXene films and nanocomposites with high capacitance[J]. PNAS,2014,111(47):16676.
[11] Tang Q, Zhou Z, Shen P.Are MXenes promising anode materials for Li ion batteries computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer[J]. J Am Chem Soc,2012,134(134):16909.
[12] Kajiyama S, Szabova L, Sodeyama K, et al.Sodium-ion intercalation mechanism in MXene nanosheets[J]. ACS Nano,2016,10(3):3334.
[13] Lukatskaya M R, Mashtalir O, Ren C E, et al.Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science,2013,341(6153):1502.
[14] Guo Z, Zhou J, Zhu L, et al.MXene: A promising photocatalyst for water splitting[J]. J Mater Chem A,2016,4:11446.
[15] Ma H L, Zhang Y, Hu Q H, et al.Chemical reduction and removal of Cr(Ⅵ) from acidic aqueous solution by ethylenediamine-reduced graphene oxide[J]. J Mater Chem,2012,22(13):5914.
[16] Mashtalir O, Cook K M, Mochalin V N, et al.Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media[J]. J Mater Chem A,2014,2(35):14334.
[17] Abdelmalak M N.MXenes: A new family of two-dimensional materials and its application as electrodes for Li-ion batteries[D]. Philadelphia: Drexel University,2014.
[18] Naguib M, Halim J, Lu J, et al.New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. J Am Chem Soc,2013,135(43):15966.
[19] Chang F, Li C, Yang J, et al.Synthesis of a new graphene-like transition metal carbide by de-intercalating Ti3AlC2[J]. Mater Lett,2013,109(10):295.
[20] Hu C, Lai C C, Tao Q, et al.Mo2Ga2C: A new ternary nanolaminated carbide[J]. Chem Commun,2015,51(30):6560.
[21] Meshkian R, Näslund L Å, Halim J, et al.Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C[J]. Scr Mater,2015,108:147.
[22] Anasori B, Xie Y, Beidaghi M, et al.Two-dimensional, ordered, double transition metals carbides (MXenes)[J]. ACS Nano,2015,9(10):9507.
[23] Ghidiu M, Lukatskaya M R, Zhao M Q, et al.Conductive two-dimensional titanium carbide ‘clay' with high volumetric capacitance[J]. Nature,2014,516(7529):78.
[24] Boota M, Anasori B, et al.Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene)[J]. Adv Mater,2016, 28:1571.
[25] Hope M A, Forse A C, Griffith K J, et al.NMR reveals the surface functionalisation of Ti3C2 MXene[J]. Phys Chem Chem Phys,2016,18(7):1583.
[26] Halim J, Lukatskaya M R, Cook K M, et al.Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chem Mater,2014,26(7):2374.
[27] Urbankowski P, Anasori B, Makaryan T, et al.Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)[J]. Nanoscale,2016,8(22):11385.
[28] Guo X, Zhang X, et al.High adsorption capacity of heavy metals on two-dimensional MXenes: An ab initio study with molecular dyna-mics simulation[J]. Phys Chem Chem Phys,2015, 18(1): 228.
[29] Xie X, Xue Y, Li L, et al.Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system[J]. Nanoscale,2014,6(19):11035.
[30] Vaisakh S S, Mahesh K V, Balanand S, et al.MAX phase ternary carbide derived 2-D ceramic nanostructures [CDCN] as chemically interactive functional fillers for damage tolerant epoxy polymer nanocomposites[J]. RSC Adv,2015,5(21):16521.
[31] Zhang X D, Xu J G, et al.Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si0.75Al0.25C2[J]. Angew Chem,2013,52(16): 4361.
[32] Yan H B.Preparation and application of the two-dimensional nano Ti3SiC2[D]. Xiangtan: Hunan University of Science and Technology,2014(in Chinese).严汉兵. 二维纳米Ti3SiC2的制备及其应用研究[D]. 湘潭: 湖南科技大学,2014.
[33] Zhao M Q, Sedran M, Ling Z, et al.Synthesis of carbon/sulfur nanolaminates by electrochemical extraction of titanium from Ti2SC[J]. Angew Chem Int Ed,2015,54(16):4810.
[34] Mashtalir O, Naguib M, Dyatkin B, et al.Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid[J]. Mater Chem Phys,2013,139(1):147.
[35] Li Z, Wang L, et al.Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2[J]. Mater Sci Eng B,2014,191:33.
[36] Bonaccorso F, Bartolotta A, Coleman J N, et al.2D-crystal-based functional inks[J]. Adv Mater,2016,28(29):6136.
[37] Mashtalir O, Lukatskaya M R, Kolesnikov A I, et al.The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene)[J]. Nanoscale,2016,8(17):9128.
[38] Naguib M, Unocic R R, Armstrong B L, et al.Large-scale delamination of multi-layers transition metal carbides and carbonitrides ‘MXenes'[J]. Dalton Trans,2015,44(20):9353.
[39] Peng Q, Guo J, Zhang Q, et al.Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide[J]. J Am Chem Soc,2014,136(11):4113.
[40] Luo J, Tao X, et al.Sn4+ ions decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance[J]. ACS Nano,2016, 10(2):2491.
[41] Wang H, Zhang J, Wu Y, et al.Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination[J]. Appl Surf Sci,2016,384:287.
[42] Li J, Du Y, Huo C, et al.Thermal stability of two-dimensional Ti2C nanosheets[J]. Ceram Int,2014, 41(2):2631.
[43] Wang K, Zhou Y, Xu W, et al.Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets[J]. Ceram Int,2016,42(7):8419.
[44] Naguib M, Mashtalir O, Lukatskaya M R, et al.One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes[J]. Chem Commun,2014,50(56):7420.
[45] Ying Y, Liu Y, Wang X, et al.Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(Ⅵ) from water[J]. ACS Appl Mater Interfaces,2015,7(3):1795.
[46] Kurtoglu M, Naguib M.First principles study of two-dimensional early transition metal carbides[J]. MRS Commun,2012,2(4):133.
[47] Halim J.Synthesis and characterization of 2D nanocrystals and thin films of transition metal carbides (MXenes)[D]. Sweden: Linkoping University,2014.
[48] Khazaei M, Arai M, Sasaki T, et al.Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides[J]. Adv Funct Mater,2013,23(17):2185.
[49] Lane N J, Barsoum M W, Rondinelli J M.Correlation effects and spin-orbit interactions in two-dimensional hexagonal 5d transition metal carbides, Tan+1Cn (n = 1, 2, 3)[J]. Epl,2013,101(5): 57004.
[50] Shein I R, Ivanovskii A L.Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n = 1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability[J]. Comput Mater Sci,2012,65:104.
[51] Khazaei M, Arai M, Sasaki T, et al.Two-dimensional molybdenum carbides: Potential thermoelectric materials of the MXene family[J]. Phys Chem Chem Phys,2014,16(17):7841.
[52] Wu X, Hao L, Zhang J, et al.Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system[J]. J Membr Sci,2016,515:175.
[53] Zhang H, Wang L, Chen Q, et al.Preparation, mechanical and anti-friction performance of MXene/polymer composites[J]. J Chromatogr A,2016,92(11):682.
[54] Gao Y, Wang L, Zhou A, et al.Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity[J]. Mater Lett,2015,150:62.
[55] Chao P, Yang X, Li Y, et al.Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity[J]. ACS Appl Mater Interfaces,2016,8(9):6051.
[56] Zhu J F, Tang Y, Yang C H, et al.Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance[J]. J Electrochem Soc,2016,163(5):1787.
[57] Gao Y, Wang L, Li Z, et al.Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate[J]. Solid State Sci,2014,35(9):62.
[58] Lin Z, Sun D, Huang Q, et al.Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batte-ries[J]. J Mater Chem A,2015,3(27):14096.
[59] Yin H, Zhu J, et al.Effect of MXene (nano-Ti3C2) on early-age hydration of cement paste[J]. J Nanomater,2015,2015(3):1.
[60] Porwal H, Tatarko P, Grasso S, et al.Graphene reinforced alumina nano-composites[J]. Carbon, 2013,64(11):359.
[61] Wang J, Li Z, Fan G, et al.Reinforcement with graphene nano-sheets in aluminum matrix composites[J]. Scr Mater,2012,66(8):594.
[62] Kim W J, Lee T J, Han S H.Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties[J]. Carbon,2014,69(4):55.
[63] Rashad M, Pan F S, Asif M, et al.Improved mechanical properties of magnesium-graphene composites with copper-graphene hybrids[J]. Mater Sci Technol,2014,31(12):1452.
[64] Kuang D.Fabrication and properties of the nikel matrix graphene composites[D]. Shanghai: Shanghai Jiao Tong University,2012(in Chinese).匡达. 石墨烯/镍基复合材料的制备和性能研究[D]. 上海: 上海交通大学, 2012.
[65] Ren Z, Meng N, Shehzad K, et al.Mechanical properties of nickel-graphene composites[D] synthesized by electrochemical deposition[J]. Nanotechnology,2015,26(6): 065706.
[66] Zhang C, Nieto A, Agarwal A.Ultrathin graphene tribofilm formation during wear of Al2O3-graphene nanoplatelet composites[J]. Nanomater Energy,2016,5(1):1.
[67] Zhang X, Xue M, Yang X, et al.Preparation and tribological pro-perties of Ti3C2(OH)2 nanosheets as additives in base oil[J]. RSC Adv,2014,5(4):56.
[68] Zhu Y Y, Wang L B, Zhang H, et al.Preparation of MXene and its lubrication properties in liquid paraffin[J]. Bull Chin Ceram Soc,2015,34(10):2940(in Chinese).朱元元, 王李波, 张恒, 等. MXene材料的制备及其对液体石蜡润滑性能的研究[J]. 硅酸盐通报,2015,34(10):2940.
[69] Madadrang C J, Kim H Y, Gao G, et al.Adsorption behavior of EDTA-graphene oxide for Pb(Ⅱ) removal[J]. ACS Appl Mater Interface,2012,4(3):1186.
[70] Zhang Q, Teng J, Zou G, et al.Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites[J]. Nanoscale,2016,8(13):7085.
[71] Liu F, Zhou A, Chen J, et al.Preparation and methane adsorption of two-dimensional carbide Ti2C[J]. Adsorption:J Int Adsorpt Soc,2016,22(7):915.
[72] Xie Y, Naguib M, Mochalin V N, et al.Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides[J]. J Am Chem Soc,2014,136(17):6385.
[73] Fauteux D,Koksbang R.Rechargeable lithium battery anodes: Alternatives to metallic lithium[J]. J Appl Electrochem,1992,23(1):1.
[74] Sun D, Wang M, Li Z, et al.Two-dimensional Ti3C2 as anode material for Li-ion batteries[J]. Electrochem Commun,2014,47(10):80.
[75] Mashtalir O, Naguib M, Mochalin V N, et al.Intercalation and delamination of layered carbides and carbonitrides[J]. Nat Commun,2013,4(2):216.
[76] Wang G, Wang B, Wang X, et al.Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries[J]. J Mater Chem,2009,19(44):8378.
[77] Naguib M, Come J, Dyatkin B, et al.MXene: A promising transition metal carbide anode for lithium-ion batteries[J]. Electrochem Commun,2012,16(1):61.
[78] Byeon A, Zhao M Q, Ren C E, et al.Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lithium-ion batteries[J]. ACS Appl Mater Interfaces,2016,8(14):7580.
[79] Ahmed B, Anjum D H, Hedhili M N, et al.H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes[J]. Nanoscale,2016,8(14):7580.
[80] Xu Y N.Preparation of layered Ti3C2Tx Lithium ion battery anode materials and electrode processes study[D]. Harbin: Harbin Institute of Technology,2015(in Chinese).徐亚南. 层状Ti3C2Tx锂离子电池负极材料的制备及其电化学性能研究[D]. 哈尔滨: 哈尔滨工业大学,2015.
[81] Matsuo Y, Ueda K.Pyrolytic carbon from graphite oxide as a negative electrode of sodium-ion battery[J]. J Power Sources,2014,263(5):158.
[82] Er D, Li J, Naguib M, et al.Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Appl Mater Interfaces,2014,6(14):11173.
[83] Kent P, Xie Y, Zhuang H, et al.Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries[J]. ACS Nano,2014,8(9):9606.
[84] Yang E, Ji H, Kim J, et al.Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries[J]. Phys Chem Chem Phys,2015,17(7):5000.
[85] Yang X, Cheng C, Wang Y, et al.Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Scie-nce,2013,341(6145):534.
[86] Yan P, Zhang R, et al.Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte[J]. J Power Sources,2015,284: 38.
[87] Zhao M Q, Ren C E, Ling Z, et al.Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J]. Adv Mater,2014,27(2):339.
[88] Xie X, Zhao M Q, et al.Porous heterostructured MXe-ne/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices[J]. Nano Energy, 2016,26:513.
[89] Dall'Agnese Y, Rozier P, et al. Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes[J]. J Power Sources, 2016,306:510.
[90] Zhao C, Wang Q, Zhang H, et al.Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors[J]. ACS Appl Mater Interfaces,2016,8(24):15661.
[91] Hu Q, Sun D, Wu Q, et al.MXene: A new family of promising hydrogen storage medium[J]. J Phys Chem A,2013,117(51):14253.
[92] Hu Q, Wang H, Wu Q, et al.Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations[J]. Int J Hydrogen Energy,2014,39(20): 10606.
[93] Yadav A, Dashora A, Patel N, et al.Study of 2D MXene Cr2C material for hydrogen storage using density functional theory[J]. Appl Surf Sci,2016,389:88.
[94] Liu Y, Du H, Zhang X, et al.Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen sto-rage reaction of magnesium hydride[J]. Chem Commun, 2015,52(4):705.
[95] Xie X, Chen S, Ding W, et al.An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanos-heets for oxygen reduction reaction[J]. Chem Commun,2013,49(86):10112.
[96] Zhao X, Liu M, Chen Y, et al.Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries[J]. J Mater Chem A,2015, 3(15):7870.
[97] Liang X, Garsuch A, Nazar L F.Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries[J]. Angew Chem,2015,54(13):3907.
[98] Jin J, Lin C, Zhang W, et al.Few-layered Ti3C2 nanosheet/glass fiber composite separator as lithium polysulphide reservoir for high-performance lithium-sulfur battery[J]. J Mater Chem A,2016,4(16): 5993.
[99] Ali A, Belaidi A, Ali S, et al.Transparent and conductive Ti3C2Tx (MXene) thin film fabrication by electrohydrodynamic atomization technique[J]. J Mater Sci Mater Electron,2016,27(5):5440.
[100] Dillon A D, Ghidiu M J, Krick A L, et al.Highly conductive optical quality solution-processed films of 2D titanium carbide[J]. Adv Funct Mater,2016,26(23):4162.
[101] Hantanasirisakul K, Zhao M Q, Urbankowski P, et al.Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties[J]. Adv Electron Mater,2016,2(6):1.
[102] Ren C E, Hatzell K B, Alhabeb M, et al.Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes[J]. J Phys Chem Lett,2015,6(20):4026.
[103] Ma Z, Hu Z, Zhao X, et al.Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer[J]. J Phys Chem C,2014,118(10):5593.
[104] Gan L Y, Zhao Y J, Huang D, et al.First-principles analysis of MoS2/Ti2C and MoS2/Ti2CY2 (Y = F and OH) all-2D semiconductor/metal contacts[J]. Phys Rev B:Condens Matter,2013,87(24):112.
[105] Lee Y, Hwang Y, Chung Y C.Achieving type Ⅰ, Ⅱ, and Ⅲ he-terojunctions using functionalized MXene[J]. ACS Appl Mater Interfaces,2015,7(13):7163.
[106] Rasool K, Helal M, Ali A, et al.Antibacterial activity of Ti3C2Tx MXene[J]. ACS Nano,2016, 10(3):3674.
[107] Ling C, Shi L, Ouyang Y, et al.Transition metal-promoted V2CO2 (MXenes): A new and highly active catalyst for hydrogen evolution reaction[J]. Adv Sci,2016,3(11):1066180.
[108] Li X, Fan G, Zeng C.Synthesis of ruthenium nanoparticles deposited on graphene-like transition metal carbide as an effective catalyst for the hydrolysis of sodium borohydride[J]. Int J Hydrogen Energy, 2014, 39(27):14927.
[109] Yu X, Li Y, Cheng J, et al.Monolayer Ti2CO2: A promising candidate for NH3 sensor or capturer with high sensitivity and selectivity[J]. ACS Appl Mater Interfaces,2015,7(24):13707.
[110] Chen J, Chen K, Tong D, et al.CO2 and temperature dual responsive ‘smart' MXene phases[J]. Chem Commun,2015,51(2):314.
[111] Xu B, Zhu M, Zhang W, et al.Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity[J]. Adv Mater,2016,28(17):3333.
[112] Liu H, Duan C, Yang C, et al.A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2[J]. Sens Actuators B: Chem,2015,218:60.
[113] Wang F, Yang C H, Duan M, et al.TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances[J]. Biosens Bioelectron,2015,74:1022.
[114] Shahzad F, Alhabeb M, Hatter C B, et al.Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science,2016,353(6304):1137.
[115] Han M, Yin X, Wu H, et al.Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-Band[J]. ACS Appl Mater Interfaces, 2016,8(32):21011.
[1] 王鹤龙, 史贵丙, 王丽, 李宗臻. 高饱和磁通密度铁基非晶纳米晶磁粉芯的研究进展[J]. 材料导报, 2025, 39(3): 24010092-9.
[2] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[3] 初红涛, 刘晓函, 赵明, 高立娣, 秦世丽, 韩爽, 王军. 铜纳米簇基荧光探针的合成及应用研究进展[J]. 材料导报, 2025, 39(2): 23110149-10.
[4] 刘恩序, 李俊杰, 刘阳, 杨超然, 周娜, 李俊峰, 罗军, 王文武. 环栅晶体管制备中SiGe选择性刻蚀技术综述[J]. 材料导报, 2024, 38(9): 22110004-7.
[5] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[6] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[7] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[8] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[9] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[10] 李雪伍, 王红星, 郭伟玲, 邢志国, 黄艳斐, 王海斗. 红外抗反射微纳结构刻蚀制备研究进展[J]. 材料导报, 2024, 38(6): 22110062-10.
[11] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[12] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[13] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[14] 江巍雪, 汤新宇, 宋金蔚, 徐祚, 张源. 纳米流体的制备、稳定性及热物性研究进展[J]. 材料导报, 2024, 38(4): 22060208-11.
[15] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed