Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 23040126-7    https://doi.org/10.11896/cldb.23040126
  无机非金属及其复合材料 |
(K0.5Na0.5)NbO3-(Ca0.5Sm0.5)(Mg0.5Nb0.5)O3铁电陶瓷的光致介电响应与光致发光
罗文柳1, 杨玲1,*, 叶懋1, 欧阳竑2, 许积文1, 唐纳1
1 桂林电子科技大学材料科学与工程学院,广西 桂林 541004
2 中国电子科技集团公司第三十四研究所,广西 桂林 541004
Photodielectric Response and Photoluminescence of (K0.5Na0.5)NbO3-(Ca0.5Sm0.5)- (Mg0.5Nb0.5)O3 Ferroelectric Ceramics
LUO Wenliu1, YANG Ling1,*, YE Mao1, OU Yanghong2, XU Jiwen1, TANG Na1
1 School of Materials Science and Engineering, Guilin Universityof Electronic Technology, Guilin 541004, Guangxi, China
2 The 34th Research Institute of China Electronics Technology Corporation, Guilin 541004, Guangxi, China
下载:  全 文 ( PDF ) ( 12536KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 介电常数在光照下发生改变的特性可用于开发新型光控器件。采用传统固相烧结法制备了不同物质的量比的(1-x)(K0.5Na0.5)NbO3-x(Ca0.5Sm0.5)(Mg0.5Nb0.5)O3(KNN-xCSMN,0.02≤x≤0.06)陶瓷,研究了其结构与光致介电响应行为。引入CSMN组分后,陶瓷的相结构由正交相转变为赝立方相,晶粒尺寸明显减小。在365 nm波长的光照下观察到明显的光致介电响应,并在x=0.03和测试频率为80 Hz时陶瓷具有高达约249%的介电可调率。弥散指数从1.43增加到1.82表明其弛豫行为增强,光学带隙从3.00 eV降低到2.36 eV。在406 nm波长的光激发下陶瓷的光致发射光谱显示出强烈的橙红色发射。同时,在光的开与关状态下其电容值呈现出可逆的开关特性,电容比约为3.5。这些结果有助于探索新型非接触式器件,如光调电容式传感器、光开关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗文柳
杨玲
叶懋
欧阳竑
许积文
唐纳
关键词:  铌酸钾钠  光致介电响应  可调性  光致发光    
Abstract: The change of the dielectric constant under illumination can be used to develop new-type light-controlled devices. (1-x)(K0.5Na0.5)NbO3-x(Ca0.5Sm0.5)(Mg0.5Nb0.5)O3(KNN-xCSMN, 0.02≤x ≤0.06) ceramics with different molar ratios were prepared by traditional solid-phase sintering method, and the structure and photoelectric response behavior were studied. When CSMN is introduced, the phase structure of ceramics changes from the orthogonal phase to the pseudo-cubic phase, and the grain size decreases significantly. An obvious photodielectric response is observed under the illumination of 365 nm light, and the dielectric tunability is up to about 249% at x=0.03 and a test frequency of 80 Hz. The increase in diffusion coefficient from 1.43 to 1.82 enhances the relaxation behavior of the ceramics, and the band gap decreases from 3.00 eV to 2.36 eV. A strong orange-red light is emitted under the illumination of 406 nm light. Meanwhile, the capacitance shows reversible switching characteristics at light-on and light-off states, and the switching ratio of capacitance at on/off states is about 3.5. These results will help to explore new noncontact devices, such as phototunable capacitive sensors and optical switches.
Key words:  (K0.5Na0.5)NbO3    photodielectric response    tunability    photoluminescence
发布日期:  2024-10-12
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(52062007);广西自然科学基金(2021GXNSFAA220020)
通讯作者:  *杨玲,通信作者,桂林电子科技大学材料科学与工程学院副教授。主持及参与国家自然科学基金地区科学基金项目、广西自然科学基金面上项目、广西电子信息材料构效关系重点实验室项目和企业课题等6项,在国内外学术期刊和会议发表论文16篇,获得授权发明专利3件,获广西科学技术进步奖三等奖1项。lingyang@guet.edu.cn   
作者简介:  罗文柳,2021年7月毕业于桂林电子科技大学材料科学与工程学院,获得工学学士学位。现为桂林电子科技大学材料科学与工程学院硕士研究生,在杨玲副教授和许积文研究员的指导下进行研究。目前主要研究领域为功能陶瓷。
引用本文:    
罗文柳, 杨玲, 叶懋, 欧阳竑, 许积文, 唐纳. (K0.5Na0.5)NbO3-(Ca0.5Sm0.5)(Mg0.5Nb0.5)O3铁电陶瓷的光致介电响应与光致发光[J]. 材料导报, 2024, 38(18): 23040126-7.
LUO Wenliu, YANG Ling, YE Mao, OU Yanghong, XU Jiwen, TANG Na. Photodielectric Response and Photoluminescence of (K0.5Na0.5)NbO3-(Ca0.5Sm0.5)- (Mg0.5Nb0.5)O3 Ferroelectric Ceramics. Materials Reports, 2024, 38(18): 23040126-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040126  或          http://www.mater-rep.com/CN/Y2024/V38/I18/23040126
1 Diao C L, Dong L, Yang Y, et al. Material Reports, 2019, 33(23), 3921 (in Chinese).
刁春丽, 董乐, 杨毅, 等. 材料导报, 2019, 33(23), 3921.
2 Tan Q, Irwin P, Cao Y. IEEJ Transactions on Fundamentals and Materials, 2006, 126(11), 1153.
3 Sheng S, Wang X Z, Liu H R, et al. Thin Solid Films, 2015, 585, 1.
4 Tagantsev A K, Sherman V O, Astafiev K F, et al. Journal of Electroceramics, 2003, 11, 5.
5 Dillman N G. Photodielectric effect in semiconductors. Ph.D. Thesis, Iowa State University of Science and Technology, USA, 1965.
6 Kumar A, Mehta N. Optical Materials, 2019, 95, 109198.
7 Taniguchi H, Moriwake H, Kuwabara A, et al. Journal of Applied Physics, 2014, 115, 164103.
8 Rubio-Marcos F, Ochoa D A, Delcampo A, et al. Nature Photonics, 2018, 12(1), 29.
9 Song Y Y, Huang Y F, Guo W L, et al. Material Reports, 2022, 36(5), 21030094 (in Chinese).
宋牙牙, 黄艳斐, 郭伟玲, 等. 材料导报, 2022, 36(5), 21030094.
10 Jiang D, Luo F, Cheng H L, et al. Material Reports, 2014, 28(6), 116 (in Chinese).
姜丹, 罗发, 程花蕾, 等. 材料导报, 2014, 28(6), 116.
11 Chai Q Z, Zhao X M, Chao X L, et al. RSC Advances, 2017, 7(45), 28428.
12 Liu Z Y, Fan H Q, Zhao Y W, et al. Journal of the American Ceramic Society, 2016, 99(1), 146.
13 Zhou S L, Zhao X, Jiang X P, et al. Chinese Journal of Structural Chemistry, 2012, 31(8), 1095.
14 Zhang X S, Yang D, Yang Z Y, et al. Ceramics International, 2016, 42(16), 17963.
15 Zhang J, Yang L, Xu J W, et al. Journal of Alloys and Compounds, 2021, 881, 160512.
16 Zhang J, Xu J W, Yang L, et al. Materials Science in Semiconductor Processing, 2022, 143, 106521.
17 Li C W, Xu X, Gao Q, et al. Ceramics International, 2019, 45(8), 11092.
18 Jaiban P, Tongtham M, Wannasut P, et al. Materials Letters, 2019, 243, 169.
19 Jaiban P, Buntham S, Watcharapasorn A. Materials Letters, 2017, 193, 133.
20 Sun H Q, Jia Q N, Li Y, et al. Scripta Materialia, 2020, 178, 398.
21 Lin J F, Xu J, Liu C W, et al. Journal of Alloys and Compounds, 2019, 784, 60.
22 Shirane G, Pichart S J, Ishikawa Y. Journal of the Physical Society of Japan, 1959, 14(10), 1352.
23 Chen B, Tian Y, Lu J B, et al. Journal of the European Ceramic Society, 2020, 40(8), 2936.
24 Hu R R, Lin Y, Zhang M, et al. Materials Today Energy, 2022, 30, 101185.
25 Cao Z J, Yang L, Xu J W, et al. Journal of Materials Science:Materials in Electronics, 2023, 34(7), 654.
26 Zhou Y, Wang P, Lin J F, et al. Dalton Transactions, 2021, 50(14), 4914.
27 Rahman A, Park S, Min Y, et al. Journal of the European Ceramic Society, 2020, 40(8), 2989.
28 Shi W M, Feng Y, Lu T Y, et al. Journal of Materials Science:Materials in Electronics, 2019, 30, 9.
29 Nie X R, Wang J T, Peng Z H, et al. Solid State Sciences, 2022, 129, 106906.
30 Yang Z T, Du J R, Martin L I D J, et al. Laser & Photonics Reviews, 2021, 15(4), 2000525.
31 Lin J F, Lu Q L, Xu J, et al. Journal of the American Ceramic Society, 2019, 102(8), 4710.
32 Zhang G F, Liu H X, Yao Z H, et al. Journal of Materials Science:Materials in Electronics, 2015, 26, 2726.
33 Ren X D, Chai Q Z, Zhao X M, et al. Ceramics International, 2019, 45(3), 3961.
34 Quan Q F, Fan H Q, Shen Q, et al. Journal of the European Ceramic Society, 2022, 42(5), 2195.
35 Li R C, Tan B, Zheng T, et al. Journal of Applied Physics, 2020, 127, 114103.
36 Zhu F Y, Ward M B, Comyn T P, et al. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(9), 1811.
37 Liu B H, Zhang Y, Li P, et al. Ceramics International, 2016, 42(12), 13824.
38 Jin C C, Wang F F, Wei L L, et al. Journal of Alloys and Compounds, 2014, 585, 185.
39 Gladkiĭ V V, Kirikov V A, Ivanova E S, et al. Physics of the Solid State, 2006, 48, 1929.
40 Nagai T, Yamada Y, Tanabe K, et al. Applied Physics Letters, 2017, 111(23), 232902.
41 Wei Y X, Jin C Q, Ni R R, et al. Journal of the European Ceramic Society, 2018, 38(14), 4689.
42 Avanesyan V T, Piskovatskova I V. Semiconductors, 2020, 54, 19.
43 Hu Y Q, Xie Q X, Wu Y, et al. Journal of the European Ceramic Society, 2020, 40(8), 2917.
44 Fu H R, Wang Y G, Hu J X, et al. Ceramics International, 2021, 47(13), 18602.
45 Yang Z T, Du J R, Martin L I D J, et al. Journal of the European Ceramic Society, 2021, 41(3), 1925.
46 Cao S Y, Chen Q, Liu J T, et al. Journal of the European Ceramic Society, 2020, 40(15), 6061.
47 Zhang Q W, Zhang Y, Sun H Q, et al. Journal of the European Ceramic Society, 2017, 37(3), 955.
[1] 贺耿超, 黄艳斐, 邢志国, 周龙龙, 吕振林, 贾磊, 郭伟玲. KNN基无铅压电陶瓷相界研究进展[J]. 材料导报, 2023, 37(20): 21090233-9.
[2] 李雪伍, 周龙龙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 呼帅邦. 铌酸钾钠压电陶瓷制备工艺研究进展[J]. 材料导报, 2023, 37(11): 21070049-9.
[3] 简燕, 杨文静, 杨磊, 宋绍意, 倪婕, 何银芳. 纳米多孔硅的多片制备及其性能表征[J]. 材料导报, 2022, 36(Z1): 22010200-6.
[4] 宋牙牙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 吕振林, 张执南. 铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J]. 材料导报, 2022, 36(5): 21030094-10.
[5] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[6] 狄淑贤, 赖泳爵, 邱武, 林乃波, 詹达. 基于简单液相法对单层二硒化钨表面电荷掺杂的研究[J]. 材料导报, 2020, 34(12): 12025-12029.
[7] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[8] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[9] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[10] 畅庚榕, 刘明霞, 马飞, 徐可为. 微应变诱导各向异性硅纳米晶形成及其光学特性[J]. 材料导报, 2018, 32(18): 3104-3109.
[11] 张小红, 杨卿, 张旭晨, 马研, 易筱银. 热氧化ZnS∶Ga制备ZnO∶Ga薄膜及其光致发光性能*[J]. 《材料导报》期刊社, 2017, 31(18): 11-15.
[12] 彭智伟,刘志宇,傅刚. ZnO四足和多足纳米结构的制备和光致发光性能研究*[J]. 材料导报编辑部, 2017, 31(10): 16-18.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed