Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 23040289-6    https://doi.org/10.11896/cldb.23040289
  高分子与聚合物基复合材料 |
表面修饰凹凸棒土填充PBT基复合材料的力学性能
康成虎*
吕梁学院物理与电子信息工程系,山西 吕梁 033001
Mechanical Properties of PBT Matrixed-Composites Filled with Surface Modified Attapulgite
KANG Chenghu*
Department of Physics and Electronic Information Engineering, Lyuliang University, Lyuliang 033001, Shanxi, China
下载:  全 文 ( PDF ) ( 11350KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过水浴法,采用γ-缩水甘油醚氧丙基三甲氧基硅烷(KH-560)对凹凸棒土(ATP)进行表面修饰。以聚对苯二甲酸丁二醇酯(PBT)为基体,经熔融插层共混,制备PBT基ATP复合材料。研究了ATP的晶型结构、表面形貌以及分散特性。通过拉伸性能、缺口冲击强度测试对复合材料的力学性能进行评估,并分析了复合材料的拉伸断口形貌,探讨了ATP对PBT基体的增强机制。结果表明:ATP为典型的纤维棒状结构,表面凹凸不平,直径为30 nm左右,基于ATP表面存在的羟基,经脱水缩合KH-560成功接枝到ATP表面,并促使ATP晶面间距增大,晶粒度发生细化,使其分散特性得到改善,表面改性剂与PBT分子链之间相互渗透,形成具有一定厚度的柔性界面层,两相之间的界面黏附特性增强。对于3%(除特殊说明外,均为质量分数)酸洗后的ATP和KH-560表面修饰的ATP填充的PBT基复合材料,它们的拉伸强度分别为58.1 MPa与61.4 MPa,相对于纯PBT分别提升了13.3%与19.7%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
康成虎
关键词:  凹凸棒土  聚对苯二甲酸丁二醇酯  复合材料  表面修饰  力学性能    
Abstract: The attapulgite(ATP)was surface modified by γ-glycidyl etheroxy propyltrimethoxy silane coupling agent (KH-560) via the water bath method. And the poly(butylene terephthalate) (PBT) matrixed-composites filled with attapulgite were prepared by melt intercalation blending technique. The crystal structure, surface morphology, and dispersion characteristics of ATP were characterized. The mechanical properties of the composite were investigated by tensile and notch impact strength testing. The tensile fracture morphology of the composite was analyzed. In addition, the reinforcement mechanism of ATP on PBT matrix was discussed. The results show that the ATP presents a typical fiber rod structure, with a rough and uneven surface and a diameter of about 30 nm. The KH-560 is successfully grafted on the surface of ATP through dehydration and condensation based on the presence of hydroxyl groups on the surface of ATP, which results in an increase in the crystal plane spacing of ATP, refinement of crystalline grain size, and the improvement of dispersion in PBT matrix. In case of the PBT matrixed-composites filled with modified ATP by KH-560, the long organic chain of modifiers on the surface of ATP and the molecular chain of PBT infiltrate each other, which results the formation of flexible interface layer with a certain thickness. Notably, the interfacial adhesion characteristics between the ATP and PBT matrix are enhanced. When the mass fractions of acid washed ATP and modified ATP by KH-560 are 3wt%, the tensile strength of corresponding composites reaches up to 58.1 MPa and 61.4 MPa, respectively, increasing by 13.3% and 19.7% compared to pure PBT.
Key words:  attapulgite    poly(butylene terephthalate)    composites    surface modification    mechanical property
发布日期:  2024-10-12
ZTFLH:  TB332  
基金资助: 山西省青年科学研究项目(202103021223385)
通讯作者:  *康成虎,通信作者,吕梁学院物理与电子信息工程系讲师。2016年于重庆文理学院材料成型及控制工程专业本科毕业,2021年于兰州理工大学材料学专业博士毕业后到吕梁学院工作至今。目前主要从事材料微结构表征、聚合物基纳米复合材料力学性能和阻燃性能等方面的研究工作。发表论文6篇,包括Journal of Vinyl and Additive Technology、Materials Research Express、Polymer Composites、Journal of Dispersion Science and Technology等。20211019@llu.edu.cn   
引用本文:    
康成虎. 表面修饰凹凸棒土填充PBT基复合材料的力学性能[J]. 材料导报, 2024, 38(18): 23040289-6.
KANG Chenghu. Mechanical Properties of PBT Matrixed-Composites Filled with Surface Modified Attapulgite. Materials Reports, 2024, 38(18): 23040289-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040289  或          http://www.mater-rep.com/CN/Y2024/V38/I18/23040289
1 Zhang W B, He D D, Wang J L, et al. Industrial Water Treatment, 2023, 43(7), 128 (in Chinese).
张文博, 贺丹丹, 王九玲, 等. 工业水处理, 2023, 43(7), 128.
2 Guo J X, Wu Z H, Li Z, et al. China Synthetic Resin and Plastics, 2022, 39(2), 33(in Chinese).
郭俊鑫, 吴正环, 黎振, 等. 合成树脂及塑料, 2022, 39(2), 33.
3 De S F P, Ribeiro D S M J, Wetler M P, et al. Journal of Drug Delivery Science and Technology, 2021, 64, 102586.
4 Tan D F, Ning G, Pang J Y, et al. Plastics Science and Technology, 2020, 48(1), 61(in Chinese).
谭登峰, 宁淦, 庞锦英, 等. 塑料科技, 2020, 48(1), 61.
5 Gong Y J, Zhang D, He M, et al. Polymer Materials Science and Engineering, 2018, 34(6), 184 (in Chinese).
龚勇吉, 张道, 何敏, 等. 高分子材料科学与工程, 2018, 34(6), 184.
6 Yang H, Cai Z, Liu H, et al. Materials Chemistry and Physics, 2020, 241, 122334.
7 Shi J, Li M. Solar Energy, 2020, 205, 62.
8 Ren S B. Study on flame retardant properties of surface modification attapulgite/PBT composite. Master’s Thesis, Lanzhou University of Technology, China, 2021(in Chinese).
任世博. 表面改性凹凸棒石/PBT基复合材料阻燃性能的研究. 硕士学位论文, 兰州理工大学, 2021.
9 Yang G Y, Peng S W, Wang W, et al. China Plastics Industry, 2022, 50(1), 119(in Chinese).
杨光远, 彭三文, 王闻, 等. 塑料工业, 2022, 50(1), 119.
10 Wang H, Liu Q, Wu S, et al. Construction and Building Materials, 2023, 400, 132827.
11 Wu T, Dong J, Xu G, et al. Polymer, 2019, 176, 196.
12 Li Y, Zhao G, Pan G, et al. Journal of Membrane Science, 2023, 675, 121517.
13 Seyedzavvar M, Boa C, Akar S, et al. Materials Today Communications, 2021, 28, 102602.
14 Jiang L, Huang Z, Wang X, et al. Materials & Design, 2020, 196, 109175.
15 Cao Y, Xu P, Wu B, et al. Composites Science and Technology, 2020, 190, 108043.
16 Abdo D, Gleadall A, Silberschmidt V V. Engineering Failure Analysis, 2019, 105, 466.
17 Abdo D, Gleadall A, Silberschmidt V V. Composite Structures, 2019, 226, 111286.
18 Arai S, Tsunoda S, Yamaguchi A, et al. Optics & Laser Technology, 2019, 117, 94.
19 Standardization Administration of the People’s Republic of China. Plastics-determination of tensile properties-Part 1:general principles:GB/T 1040. 1-2018, China Standards Press, China, 2018 (in Chinese).
中国国家标准化管理委员会. 塑料 拉伸性能的测定 第1部分:总则:GB/T 1040. 1-2018. 中国标准出版社, 2018.
20 Standardization Administration of the People’s Republic of China. Thermoplastics pipes-determination of pendulum impact strength by the charpy method-part 1:general test method:GB/T 18743. 1-2022, Beijing:China Standards Press, 2022 (in Chinese).
中国国家标准化管理委员会. 热塑性塑料管材 简支梁冲击强度的测定 第1部分:通用试验方法:GB/T 18743. 1-2022, 中国标准出版社, 2022.
21 Yang Y, Yin Q, Xu F, et al. Thermochimica Acta, 2022, 718, 179363.
22 Zhang X G, Shi H J, Liu J, et al, Materials Reports, 2022, 36(5), 237 (in Chinese).
张晓光, 时海军, 刘杰, 等. 材料导报, 2022, 36(5), 237.
23 Han C, Zhao H, Yang T, et al. Polymer Testing, 2023, 128, 108222.
24 Dhanumalayan E, Joshi G M, Kaleemulla S, et al. Progress in Organic Coatings, 2019, 131, 17.
25 Barakat M, Reda H, Chazirakis A, et al. Polymer, 2023, 286, 126379.
26 Arai S, Tsunoda S, Yamaguchi A, et al. Additive Manufacturing, 2018, 21, 683.
27 Shui T, Li Z, Xiang D, et al. China Plastics Industry, 2023, 51(5), 95(in Chinese).
税涛, 李珍, 向东, 等. 塑料工业, 2023, 51(5), 95.
28 Li M Q, Li X F, Wang R T, et al. Materials Reports, 2023, 37(20), 229 (in Chinese).
李美琪, 李晓飞, 王瑞涛, 等. 材料导报, 2023, 37(20), 229.
29 Zheng J Z, Pei H H, Zhang G C, et al, Materials Reports, 2023, 37(7), 247(in Chinese).
郑家桢, 裴海华, 张贵才, 等. 材料导报, 2023, 37(7), 247.
30 Xu J L, An J, Kang C H, et al. Acta Materiae Compositae Sinica, 2021, 38(8), 2586 (in Chinese).
徐建林, 安静, 康成虎, 等. 复合材料学报, 2021, 38(8), 2586.
[1] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[2] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[3] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[4] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[5] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[6] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[7] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[8] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[9] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[10] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[11] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[12] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[13] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[14] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[15] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed