Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19055-19061    https://doi.org/10.11896/cldb.19050101
  无机非金属及其复合材料 |
石墨烯基水润滑添加剂研究进展
王永欣1, 胡艺纹1, 赵海超1, 李金龙1, 王春婷1, 毛金明2, 王立平1, 薛群基1
1 中国科学院宁波材料技术与工程研究所,中国科学院海洋新材料与应用技术重点实验室,浙江省海洋材料与防护技术重点实验室,宁波 315201
2 浙江纺织服装职业技术学院,宁波 315201
Research Progress of Graphene as Additives of Water-based Lubricants
WANG Yongxin1, HU Yiwen1, ZHAO Haichao1, LI Jinlong1, WANG Chunting1, MAO Jinming2, WANG Liping1, XUE Qunji1
1 Key Laboratory of Marine New Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
2 Zhejiang Fashion Institute of Technology, Ningbo 315201, China
下载:  全 文 ( PDF ) ( 4172KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着工业的飞速发展和人们环保意识的日益增强,传统润滑油在避免环境污染等方面越来越难以满足人们的使用要求,而环境友好型润滑剂成为摩擦学研究的重要方向。水基润滑剂具有成本低、冷却性能优、可生物降解和安全性能好等优点,是一种典型的绿色环保型润滑剂,既可以满足生态环境保护的使用要求,又可以满足某些特殊环境的使用需求。但在实际应用中,需要引入纳米添加剂来解决水介质的运动黏度小、润滑性能有限和易腐蚀等问题。石墨烯基材料是一种具有优异力学性能的片层结构纳米材料,且片层之间的滑动属于超润滑滑动,作为水基润滑添加剂使用潜力巨大。然而,石墨烯是由类苯环为单元组合而成的稳定结构,片层之间存在强烈的π-π相互作用,在水基介质中很容易产生聚集沉淀。因此,近年来许多学者开始采用不同的方法对石墨烯基材料进行功能化修饰,逐渐发现修饰后的石墨烯基材料在水基溶液中具有较好的分散稳定性,并且保持石墨烯原有的力学和润滑性能,作为添加剂显著提升了水基介质的润滑性能。
本文归纳了目前石墨烯面向水润滑潜在应用的常用改性方法:(1)利用氧化石墨烯等片层上的含氧基团作为“锚固点”与修饰分子发生化学反应的共价键功能化修饰;(2)利用修饰分子与石墨烯基材料之间的π-π相互作用、离子相互作用和氢键等作用力进行结合的非共价键功能化修饰;(3)对石墨烯基材料进行尺寸调控。修饰后得到的石墨烯基水润滑添加剂能够有效降低工件间的摩擦系数和磨损率,并提高水基润滑剂的缓蚀效率。但是,石墨烯基材料作为水基润滑添加剂使用,其在水中达到长期的分散稳定性还具有一定的挑战性。并且目前所采用的多为油基润滑剂的评价体系,缺少对其冷却性能和生物降解性的测试标准与方法,因此需要建立一套针对石墨烯基水润滑添加剂的完整、系统的评价体系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王永欣
胡艺纹
赵海超
李金龙
王春婷
毛金明
王立平
薛群基
关键词:  水基润滑剂  纳米添加剂  石墨烯  摩擦学性能  减摩抗磨    
Abstract: With the rapid development of industry and people's increasing emphasis on environmental protection, traditional lubricants can no longer meet people's needs in terms of avoiding environmental pollution,therefore, the environmentally friendly lubricants become an important direction in tribological research.Water-based lubricant has been used as green and eco-friendly lubricant to meet the needs of certain special environments and protect ecological requirements due to the advantages of low cost, excellent cooling performance, biodegradability, and safety performance. However, the shortcomings of water-based lubricant such as low kinematic viscosity, limited lubricating properties and easy corrosion limit the development of water lubrication technology in practical applications, so it is necessary to introduce nano-additives to solve these problems. The graphene-based material is a sheet-structured nanomaterial with excellent mechanical properties, and the sliding between the sheets belongs to ultra-lubricated sliding, so it can be used as a water-based lubricating additive. However, graphene is a stable material composed of a benzene-like ring unit and there is a strong π-π interaction between the sheets, which easily causes aggregate precipitation in water. Therefore, in recent years, many researchers have used different methods to functionally modify graphene-based materials. It has been found that the modified graphene-based materials have better dispersion stability in water-based solutions and maintain the original mechanics of graphene. So it can be used as an additive to significantly improve the lubrication properties of water-based solutions.
This paper summarizes the current methods of graphene modification for potential applications of water lubricating additives: (1) the covalently modification of graphene-based materials prepared by chemical reaction between the modified molecule and the oxygen-containing group of graphene oxide. (2) Functional modification of graphene-based materials obtained by non-covalent bonding of π-π interaction, ionic interaction and hydrogen bonding between modified molecules and graphene-based materials.(3) The size control of graphene-based materials. The modified graphene-based water-lubricating additive can effectively reduce the friction coefficient and wear rate of workpieces, and improve the corrosion inhibition efficiency of water-based lubricants. However, the graphene-based materials are used as a water-based lubricant additive which achieve long-term dispersion stability in water also has some challenges. At present, the evaluation system of water-based lubricants mostly adopts the evaluation system of oil-based lubricants, and lacks the test standards and methods for cooling performance and biodegradability. Therefore, it is necessary to establish a complete and systematic evaluation system for graphene-based water lubricating additives.
Key words:  water-based lubricant    nano-additive    graphene    tribological property    friction-reduced and anti-wear
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TH117.1  
基金资助: 国家杰出青年科学基金(51825505);中国科学院战略性先导科技专项(A类)资助(XDA13040601);宁波市科技创新2025重大专项(2018B10028);中国科学院青年创新促进会资助项目(2018336)
通讯作者:  yxwang@nimte.ac.cn   
作者简介:  王永欣,中国科学院宁波材料技术与工程研究所研究员、博士研究生导师。2011年博士毕业于中国科学院兰州化学物理研究所固体润滑国家重点实验室材料学专业,随后就职于中国科学院宁波材料技术与工程研究所表面工程事业部,德国科布伦茨兰道大学访问学者。主要研究方向为摩擦学表界面行为及苛刻工况减摩耐磨涂层材料。在ACS Applied Materials and Interfaces、Carbon、Applied Surface Science、Surface and Coatings Technology、Wear、 Tribology Letters、Tribology International、《表面工程学报》《摩擦学学报》等国内外权威学术期刊上发表论文80余篇。
引用本文:    
王永欣, 胡艺纹, 赵海超, 李金龙, 王春婷, 毛金明, 王立平, 薛群基. 石墨烯基水润滑添加剂研究进展[J]. 材料导报, 2021, 35(19): 19055-19061.
WANG Yongxin, HU Yiwen, ZHAO Haichao, LI Jinlong, WANG Chunting, MAO Jinming, WANG Liping, XUE Qunji. Research Progress of Graphene as Additives of Water-based Lubricants. Materials Reports, 2021, 35(19): 19055-19061.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050101  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19055
1 Holmberg K, Andersson P, Nylund N, et al. Tribology International, 2014, 78, 94.
2 Holmberg K, Andersson P, Erdemir A. Tribology International, 2012, 47, 221.
3 Holmberg K, Erdemir A. Friction, 2017, 5(3), 263.
4 Zhang S, Ma T, Erdemir A, et al. Materials Today, DOI: 10.1016/j.mattod.2018.12.002.
5 Clauss Francis J. Solid lubricants & self-lubricating solids, Academic Press, New York and London, 1972.
6 Gong Q, Yu L. Lubrication Engineering, 2000(5), 65(in Chinese).
巩清叶, 余来贵.润滑与密封, 2000(5), 65.
7 Ren Y. Science and Technology of West China, 2004(12), 79 ( in Chinese).
任永吉.中国西部科技, 2004(12), 79.
8 Ye B, Tao D. Lubrication Engineering, 2000(5), 73(in Chinese).
叶斌, 陶德华.润滑与密封, 2002(5), 73.
9 Wu C, Jia X. Journal of Hebei Institute of Technology, 2006, 28(4), 32(in Chinese).
吴超, 贾晓鸥.河北理工学院学报, 2006, 28(4), 32.
10 Liu J, Shang S, Yang F, et al. Journal of Wuhan Polytechnic University, 2008, 24(7), 26(in Chinese).
刘建芳, 尚双杰, 杨帆,等. 武汉工业学院学报, 2008, 24(7), 26.
11 Sato T, Besshi T, Sato D, et al. Wear, 2001, 249, 50.
12 Peng Y, Hu Y, Wang H. Tribology Letters, 2006, 25(3), 247.
13 Min C, Zhang Q, Shen C, et al. RSC Advance, 2017, 7(52), 32574.
14 Zhang C, Zhang S, Yu L, et al. Applied Surface Science,2012,259,824.
15 Xiao H, Liu S. Materials & Design, 2017, 135, 319.
16 Zhang L, Pu J, Wang L, et al. Carbon, 2014, 80, 734.
17 Gift J, Misiolek W, Force I. Journal of Tribology, 2004, 126(4), 795.
18 Nosonovsky M. Tribology Online, 2007, 2, 49.
19 Zheng Z, Fang J,Wang J, et al. Tribology, 2017, 37(3), 409(in Chinese).
郑哲, 方建华, 王建华,等. 摩擦学学报, 2017, 37(3), 40.
20 Wang Y. Science & Technology Information, 2008(32), 542(in Chinese).
王艳芬. 科技信息, 2008(32), 542.
21 Bao Y, Sun J, Kong L. Tribology International, 2017, 114, 257.
22 Luo T, Wei X, Zhao H, et al. Ceramics International, 2014, 40, 10103.
23 Zhang C, Zhang S, Yu L, et al. Applied Surface Science, 2012, 259, 824.
24 Gu Y, Zhao X, Liu Y, et al. Journal of Nanomaterials, 2014, 2014, 1.
25 Song H, Li N. Applied Physics A, 2011, 105(4), 827.
26 Zhang H, Hu H, Ye W, et al. Journal of Applied Polymer Science, 2011, 122(5), 3145.
27 Wang Y, Yu Q, Cai M, et al. Tribology International, 2017, 113, 58.
28 Li J, Fan B, Ren T, et al. Tribology International, 2015, 88, 1.
29 Sulek M, Wasilewski T. Tribology Letters, 2005, 18, 197.
30 Yan Z. Lubricating Materials and Lubrication Technology, China Petrochemical Press, 2000(in Chinese).
颜志光.润滑材料与润滑技术, 中国石化出版社, 2000.
31 Jiang H. Study on new water-soluble anti-rust and anti-wear multi-functional additives. Master's Thesis, Shanghai University, 2006(in Chinese).
蒋海珍. 新型水溶性防锈抗磨多功能添加剂的研究. 硕士学位论文,上海大学, 2006.
32 Meyer J, Geim A, Katsnelson M, et al. Nature, 2007, 446(7131), 60.
33 Wang K. Study on antifriction of graphene oxide as lubricating oil additive. Master's Thesis, Nanjing Forestry University, 2018(in Chinese).
王凯.氧化石墨烯作为润滑油添加剂减摩性研究. 硕士学位论文, 南京林业大学, 2018.
34 Marchetto D, Feser T, Dienwiebel M. Friction, 2015, 3(2), 161.
35 Liu S, Wang H, Xu Q, et al. Nature Communcation, 2017, 8, 14029.
36 Pu J, Wang L, Xue Q. Tribology, 2014, 34(1), 93(in Chinese).
蒲吉斌, 王立平, 薛群基.摩擦学学报, 2014, 34(1), 93.
37 Feng X, Kwon S, Park J, et al. ACS Nano, 2013, 7(2), 1718.
38 Chen C, Qiu S, Cui M, et al. Carbon, 2017, 114, 356.
39 Liu X, Pu J, Wang L P, et al. Journal of Materials Chemistry A, 2013, 11, 3797.
40 Qiao Y, Zhao H, Zang Y, et al. Chemical Industry and Engineering Progress, 2014, 33(1), 216(in Chinese).
乔玉林, 赵海朝, 臧艳,等. 化工进展, 2014, 33(1), 216.
41 Zhang Z, Liu X, Li T. Chemical Industry and Engineering Progress,2011, 30(4), 216(in Chinese).
张紫萍, 刘秀军, 李同起.化工进展, 2011, 30(4), 788.
42 Ma W, Zhou J, Lin X. Acta Chimica Sinica, 2011, 69(12), 1463(in Chinese).
马文石, 周俊文, 林晓丹.化学学报, 2011, 69(12), 1463.
43 Yang J, Xia Y, Song H, et al. Tribology International, 2017, 105, 118.
44 Hu Y, Wang Y, Zeng Z, et al. Carbon, 2018, 137, 41.
45 Ye X, Ma L, Yang Z, et al. ACS Applied Materials Interfaces, 2016, 8(11), 7483.
46 Fan Y, Zhao Z, Wan W, et al. Chemical Industry and Engineering Progress, 2011, 30(7), 1509(in Chinese).
范彦如, 赵宗彬, 万武波,等. 化工进展, 2011, 30(7), 1509.
47 Qiu S, Li W, Zheng W, et al. ACS Applied Materials Interfaces, 2017, 9(39), 34294.
48 Liang S, Shen Z, Yi M, et al. Carbon, 2016, 96, 1181.
49 Hu Y, Wang Y, Zeng Z, et al. Tribology International, 2019, 135, 277.
50 Zhao H, Qiao Y, Zang Y, et al. Journal of the Chinese Ceramic Society, 2015, 43(4), 437(in Chinese).
赵海朝, 乔玉林, 臧艳,等. 硅酸盐学报, 2015, 43(4), 437.
51 Dong Y, Shao J, Chen C, et al. Carbon, 2012, 50(12), 4738.
52 Shang W, Cai T, Zhang Y, et al. Tribology International, 2018, 118, 373.
53 Shang W, Cai T, Zhang Y, et al. Tribology International, 2018, 121, 302.
54 Liu X, Huang Z, Tang W, et al. Nano, 2017, 12(9), 1750108.
55 Hu Y, Wang Y, Wang C, et al. Carbon, 2019, 152, 511.
[1] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[2] 黄绪德, 刘欣. 利用维生素C和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
[3] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[4] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[5] 刘家森, 陈秀华, 李绍元, 马文会, 李毅, 胡焕然, 马壮. 石墨烯/硅肖特基结太阳能电池的研究进展[J]. 材料导报, 2021, 35(9): 9115-9122.
[6] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[7] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[8] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[9] 吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
[10] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[11] 张诗洋, 朋小康, 廖松义, 闵永刚. 用于分离重金属离子的聚苯胺改性氧化石墨烯复合膜[J]. 材料导报, 2021, 35(18): 18030-18034.
[12] 解忧, 曹松, 吴秀, 于冰艺, 王素芳. 双层石墨烯掺杂Pd对CO和NO的气敏特性研究[J]. 材料导报, 2021, 35(18): 18035-18039.
[13] 王翊, 郭顺德, 刘元军, 赵晓明. 铁磁材料/石墨烯复合吸波涂层织物的研究进展[J]. 材料导报, 2021, 35(17): 17178-17184.
[14] 王艳坤. 四氧化三铁/石墨烯纳米复合材料的静电自组装制备及储锂性能[J]. 材料导报, 2021, 35(16): 16008-16014.
[15] 张建华, 王朋厂, 杨连乔. 基于化学气相沉积石墨烯的传感器的研究进展[J]. 材料导报, 2021, 35(15): 15072-15080.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed