Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22110325-11    https://doi.org/10.11896/cldb.22110325
  金属与金属基复合材料 |
事故容错锆包壳表面FeCrAl合金涂层的研究进展
王亚恒, 左家栋, 王亚强*, 张金钰, 吴凯, 刘刚, 孙军
西安交通大学金属材料强度国家重点实验室,西安 710049
Research Progress of FeCrAl Coatings on Accident-Tolerant Zircaloy Cladding Surface
WANG Yaheng, ZUO Jiadong, WANG Yaqiang*, ZHANG Jinyu, WU Kai, LIU Gang, SUN Jun
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
下载:  全 文 ( PDF ) ( 23814KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 日本福岛核事故暴露出了核燃料包壳锆合金在失水事故工况下的致命缺陷,即锆水反应,同时也引发了高安全事故容错燃料(ATF)包壳材料的研究热点。表面涂层技术是一种有效提升现役锆合金包壳事故容错能力的重要途径,其中FeCrAl合金涂层由于具有优异的抗高温氧化性能和高温力学性能,是极具发展潜力的ATF包壳涂层候选材料之一。本文主要综述了FeCrAl合金涂层的制备工艺、成分组织、服役性能(力学、氧化、腐蚀、辐照)及失效机制,并对锆合金包壳/FeCrAl涂层体系在工程应用中存在的问题和未来的发展方向进行了分析与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王亚恒
左家栋
王亚强
张金钰
吴凯
刘刚
孙军
关键词:  锆合金包壳  表面技术  FeCrAl涂层  微观组织  服役性能  失效机制    
Abstract: The Fukushima nuclear accident in Japan exposed the fatal deficiency of zircaloy fuel cladding under loss of coolant accident (LOCA) conditions, i.e., the reaction of zirconium with high-temperature steam. As a result, a research focus on the accident tolerant fuel (ATF) cladding materials with high security was triggered rapidly. Surface coating technologies provide a promising avenue for effectively improving the accident tolerance of zircaloy cladding in service. FeCrAl alloy, due to its excellent oxidation resistance and mechanical properties at high temperatures, becomes one of the candidate coating materials with great development potential for ATF claddings. This paper mainly reviewed the preparation technologies, composition and microstructure, service performances (including mechanical properties, oxidation resistance, corrosion resistance and anti-irradiation), and the relevant failure mechanisms of FeCrAl alloy coating. Moreover, the existed problems of FeCrAl coating/zircaloy cladding system in the engineering applications were also discussed, with prospecting the future direction of development.
Key words:  zircaloy cladding    surface technology    FeCrAl coatings    microstructure    service performances    failure mechanisms
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TG178  
基金资助: 国家自然科学基金(U2067219;U20B2027;52001247;92163201);博士后创新人才支持计划项目 (BX20190266)
通讯作者:  *王亚强,西安交通大学材料科学与工程学院副教授、硕士研究生导师。分别于2012年和2019年获得西安交通大学材料科学与工程专业学士学位与博士学位,毕业后留校工作至今。目前主要从事高性能核燃料包壳金属涂层材料的研发及应用、金属纳米薄膜材料的变形断裂与强韧化等研究工作。发表论文60余篇,包括Acta Materialia、Advanced Materials、Scripta Materialia等。yaqiangwang@xjtu.edu.cn   
作者简介:  王亚恒,2020年6月于河南科技大学获得工学学士学位。现为西安交通大学材料科学与工程学院硕士研究生。目前主要研究领域为包壳涂层的界面特性和高温氧化性能。
引用本文:    
王亚恒, 左家栋, 王亚强, 张金钰, 吴凯, 刘刚, 孙军. 事故容错锆包壳表面FeCrAl合金涂层的研究进展[J]. 材料导报, 2024, 38(12): 22110325-11.
WANG Yaheng, ZUO Jiadong, WANG Yaqiang, ZHANG Jinyu, WU Kai, LIU Gang, SUN Jun. Research Progress of FeCrAl Coatings on Accident-Tolerant Zircaloy Cladding Surface. Materials Reports, 2024, 38(12): 22110325-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110325  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22110325
1 Lei Y M. Design, synthesis and properties of protective coatings for accident tolerant fuels. Ph. D. Thesis, University of Science and Technology of China, China, 2021(in Chinese).
雷一明. 几种事故容错燃料包壳涂层的设计、制备与性能研究. 博士学位论文, 中国科学技术大学, 2021.
2 Rickover H G, Geiger L D, Lustman B. Energy Research and Development Administration, DOI:10.2172/4240391.
3 Gadiyar H. In: Proceedings of Symposium on Zirconium Alloys For Reactor Components. Bhabha Atomic Research Centre:Bombay, 1992, pp.149.
4 Cox B. Journal of Nuclear Materials, 2005, 336(2), 331.
5 Kashkarov E, Afornu B, Sidelev D, et al. Coatings, 2021, 11(5), 557.
6 Bischoff J, Delafoy C, Vauglin C, et al. Nuclear Engineering and Technology, 2018, 50(2), 223.
7 Kim H G, Yang J H, Kim W J. Nuclear Engineering and Technology, 2016, 48(1), 1.
8 Cheng B, Chou P, Kim Y J. EPJ Nuclear Sciences & Technologies, 2016, 2, 1.
9 Terrani K A, Zinkle S J, Snead L L. Journal of Nuclear Materials, 2014, 448(1), 420.
10 Yueh K, Terrani K A. Journal of Nuclear Materials, 2014, 448(1), 380.
11 Liu J K, Zhang X H, Yun D. Materials Reports, 2018, 32(11), 1757. (in Chinese)
刘俊凯, 张新虎, 恽迪. 材料导报, 2018, 32(11), 1757.
12 Baek J H, Jeong Y H. Journal of Nuclear Materials, 2008, 372(2), 152.
13 Kim H G, Hwan J Y. Nuclear Engineering and Technology, 2010, 42(2), 193.
14 Duan Z G, Yang H L, Satoh Y, et al. Nuclear Engineering and Design, 2017, 316, 131.
15 Maier B R, Garcia-Diaz B L, Hauch B, et al. Journal of Nuclear Mate-rials, 2015, 466, 712.
16 Usui T, Sawada A, Amaya M, et al. Journal of Nuclear Science and Technology, 2015, 52(10), 1318.
17 Xiao W W, Deng H, Zou S L, et al. Journal of Nuclear Materials, 2018, 509, 542.
18 Wang X J, Liu Y H, Feng S, et al. Chinese Journal of Vacuum Science and Technology, 2018, 38(4), 332. (in Chinese)
王晓婧, 刘艳红, 冯硕, 等. 真空科学与技术学报, 2018, 38(4), 332.
19 Tang C C, Steinbrueck M, Stueber M, et al. Corrosion Science, 2018, 135, 87.
20 Dong Y, Ge F F, Meng F P, et al. Surface & Coatings Technology, 2018, 350, 841.
21 Dong Y. Preparation and oxidation in high-temperature steam of Cr-AI-Si(-N) protective coatings coated on Zr alloys. Master's Thesis, Chengdu University of Technology, China, 2018 (in Chinese).
董悦. Zr合金表面Cr-Al-Si(-N)防护涂层的制备及其抗高温水蒸气氧化研究. 硕士学位论文, 成都理工大学, 2018.
22 Xiao X, Wang Y Q, Zhang J Y, et al. Materials China, 2022, 41(6), 445(in Chinese).
肖珣, 王亚强, 张金钰, 等. 中国材料进展, 2022, 41(6), 445.
23 Kim H G, Kim I H, Jung Y I, et al. Journal of Nuclear Materials, 2015, 465, 531.
24 Zhong W C, Mouche P A, Heuser B J. Journal of Nuclear Materials, 2018, 498, 137.
25 Yeom H, Maier B, Johnson G, et al. Journal of Nuclear Materials, 2018, 507, 306.
26 Yeom H, Maier B, Johnson G, et al. Journal of Nuclear Materials, 2019, 526, 151737.
27 Yang H Y, Zhang R Q, Peng X M, et al. Surface Technology, 2017, 46(1), 69(in Chinese).
杨红艳, 张瑞谦, 彭小明, 等. 表面技术, 2017, 46(1), 69.
28 He L X, Liu C H, Lin J H, et al. Journal of Nuclear Materials, 2021, 551, 152966.
29 Yang H Y, Chen Q S, Zhang R Q, et al. Nuclear Power Engineering, 2020, 41(S1), 200(in Chinese).
杨红艳, 陈青松, 张瑞谦, 等. 核动力工程, 2020, 41(S1), 200.
30 Wang Y D, Zhou W C, Wen Q L, et al. Surface & Coatings Technology, 2018, 344, 141.
31 Li T, Liu T. Nuclear Power Engineering, 2019, 40(4), 65(in Chinese).
李锐, 刘彤. 核动力工程, 2019, 40(4), 65.
32 Jr C V K, Dennis H, Phillip L, et al. Journal of Thermal Spray Techno-logy, 2005, 14(3), 330.
33 Shang C. China Steel Focus, 2021(5), 35(in Chinese).
尚灿. 冶金管理, 2021(5), 35.
34 Chen Q S. Investigation of the preparation and accident-tolerant properties of metal coating on zirconium alloy. Master's Thesis, Chengdu University of Technology, China, 2020(in Chinese).
陈青松. 锆合金表面事故容错金属涂层的制备及相关性能研究. 硕士学位论文, 成都理工大学, 2020.
35 Yamamoto Y, Field K G, Snead L L. Iaea Tecdoc Series, 2016, 47(29), 47080117.
36 Zhang Y Y, Sun H Y, Wang H, et al. Materials Science & Engineering A, 2021, 826, 142003.
37 Yamamoto Y, Pint B A, Terrani K A, et al. Journal of Nuclear Mate-rials, 2015, 467, 703.
38 Huang X, Li X Y, Fang X D, et al. Journal of Materials Engineering, 2020, 48(3), 19(in Chinese).
黄希, 李小燕, 方晓东, 等. 材料工程, 2020, 48(3), 19.
39 Satoru K, Takayuki T. Scripta Materialia, 2010, 63(11), 1104.
40 Kim I H, Jung Y I, Kim H G, et al. Surface & Coatings Technology, 2021, 411, 126915.
41 Zhong W C, Mouche P A, Han X C, et al. Journal of Nuclear Materials, 2016, 470, 327.
42 Gigax J G, Kennas M, Kim H, et al. Journal of Nuclear Materials, 2019, 519, 57.
43 Josefsson H, Liu R, Svensson J E, et al. Materials and Corrosion, 2005, 56(11), 801.
44 Badini C, Laurella F. Surface & Coatings Technology, 2001, 135(2), 291.
45 Yin L, Jurewicz T. B, Larsen M, et al. Journal of Nuclear Materials, 2021, 554, 153090.
46 Zhou J, Qiu S Y, Du P N, et al. Materials Reports, 2017, 31(S2), 47(in Chinese).
周军, 邱绍宇, 杜沛南, 等. 材料导报, 2017, 31(S2), 47.
47 Field K G, Hu X X, Littrell K C, et al. Journal of Nuclear Materials, 2015, 465, 746.
48 Field K G, Briggs S A, Sridharan K, et al. Journal of Nuclear Materials, 2017, 489, 118.
49 Lei Y, Zhang H S, Mao J J, et al. Nuclear Power Engineering, 2022, 43(1), 97(in Chinese).
雷阳, 张海生, 毛建军, 等. 核动力工程, 2022, 43(1), 97.
50 Deng P, Peng Q J, Han E H, et al. Corrosion Science, 2017, 127, 91.
51 Wang P, Grdanovska S, Bartels D M, et al. Journal of Nuclear Mate-rials, 2020, 533, 152108.
52 Hao S Z, Zhao L M, He D Y. Nuclear Instruments and Methods in Physics Research Section B, 2013, 312, 97.
53 Haley J C, Briggs S A, Edmondson P D, et al. Acta Materialia, 2017, 136, 390.
54 Jiang G Y, Xu D H, Feng P, et al. Journal of Alloys and Compounds, 2021, 869, 159235.
55 Ackland G. Science, 2010, 327(5973), 1587.
56 Yutani K, Kishimoto H, Kasada R, et al. Journal of Nuclear Materials, 2007, 367, 423.
57 Rebak R B. EPJ Nuclear Sciences & Technologies, 2017, 3, 34.
58 Alat E, Motta A T, Comstock R J, et al. Surface & Coatings Technology, 2015, 281, 133.
59 Zhang W, Tang R, Yang Z B, et al. Surface & Coatings Technology, 2018, 347, 13.
60 Pint B A, Terrani K A, Brady M P, et al. Journal of Nuclear Materials, 2013, 440(1), 420.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[3] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[4] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[5] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[6] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[7] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[8] 郑道友, 徐宇欣, 王苏煜, 王文权. 焊丝成分对超高强装甲钢焊接接头组织与性能的影响[J]. 材料导报, 2024, 38(10): 22080032-7.
[9] 周安阳, 郭伟玲, 黄艳斐, 王志远, 王海斗, 邢志国. 磁场对合金材料服役性能影响的研究进展[J]. 材料导报, 2024, 38(10): 22110204-13.
[10] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[11] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[12] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[13] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[14] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[15] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed