Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22110204-13    https://doi.org/10.11896/cldb.22110204
  金属与金属基复合材料 |
磁场对合金材料服役性能影响的研究进展
周安阳1, 郭伟玲1, 黄艳斐1, 王志远2, 王海斗1,3,*, 邢志国1,*
1 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
2 哈尔滨工业大学材料科学与工程学院,哈尔滨 150001
3 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
Research Progress on the Effect of Magnetic Field on the Service Performance of Alloy Material
ZHOU Anyang1, GUO Weiling1, HUANG Yanfei1, WANG Zhiyuan2, WANG Haidou1,3,*, XING Zhiguo1,*
1 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
3 National Engineering Research Center for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 41112KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着我国海洋工程、运载火箭、天地往返等重大战略工程的实施,合金作为各种装备的主要材料,在苛刻工况下的服役性能提升尤为迫切,如合金材料在海洋大气、深海、高原严寒等复杂环境中的防腐性能提升,在高温、重载环境中关键部件的长寿命可靠服役,在航空航天、地质钻探环境中的减摩,在高速、高压环境中的力学性能提升等问题,使得实现合金材料高性能、高可靠的研究成为近年来的热点话题。磁场处理区别于传统合金加工方法,为提高合金材料性能提供了新的途径和方法,具有无接触、清洁、降低资源能耗等特点,对合金材料的制备以及加工工艺而言具有极其重要的意义。本文首先从固态和熔融态合金两条路线出发归纳了磁场不同的典型作用机理及其研究进展,梳理分析了磁场处理下凝固过程中的晶体结构以及磁场对固态合金微观组织(包括磁畴、相变和位错)的影响;其次针对磁场对合金性能影响的问题,从力学、摩擦、疲劳性能、耐腐蚀四个方面来阐述,对比分析不同类型、强度、方向的磁场对合金性能的影响效果差异;最后展望了磁场处理合金的未来发展趋势,并提出了亟待解决的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周安阳
郭伟玲
黄艳斐
王志远
王海斗
邢志国
关键词:  磁场处理  合金  机理  微观组织  性能    
Abstract: As a number of major strategic projects in China are being implemented in fields such as ocean engineering and aerospace engineering, it is particularly important to ensure the service performance of alloys, used as key building materials in these strategic projects, can withstand increasingly harsh conditions. In particular, these engineering projects require alloys with improved anti-corrosion performance in complex environments such as in ocean-atmosphere interactions, the deep sea, and cold plateaus, long lifetimes and reliable service in high-temperature and heavy-load environments, friction reduction in aerospace and geological drilling environments, and improved mechanical properties in high-speed and high-pressure environments. This demand has led to an increase in popularity for research on developing highly-reliable alloy materials demonstrating high performance in complex environments. Processing alloys under magnetic fields differs from traditional alloy-processing methods, providing a non-contact method capable of improving the performance of alloy materials with increased cleanliness and reduced energy consumption. These properties are extremely important for the preparation and processing of alloy materials. Firstly, this paper summarizes the typical mechanisms and research progress of different magnetic fields in solid and molten alloys. This paper also analyses the crystal structure of alloys during solidification when under magnetic fields, and the effect of magnetic fields on the microstructure of solid alloys, including magnetic domains, phase transitions and dislocation. Secondly, the influence of different magnetic field types, intensities, and directions on alloy mechanics, friction, fatigue performance, and corrosion resistance is investigated. Finally, potential future developments for magnetic-field-treated alloys are discussed, and solutions to some of the urgent problems affecting major strategic works are proposed.
Key words:  magnetic field treatment    alloy    mechanism    microstructure    property
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TB31  
基金资助: 国家自然科学基金重点项目(52275227;52130509);基础加强计划重点基础研究项目(2019-JCJQ-JJ-034;2019-JCJQ-ZD-302)
通讯作者:  *邢志国,中国人民解放军陆军装甲兵学院装备再制造技术国防科技重点实验室助理研究员。2010年在中国西安理工大学获得博士学位。目前主要从事表面工程和摩擦学以及再制造产品的寿命评估。xingzg2011@163.com
王海斗,研究员,博士研究生导师,中国人民解放军陆军装甲兵学院机械产品再制造国家工程研究中心主任。现在主要从事表面工程、再制造和摩擦学方面的研究。whaidou2021@163.com   
作者简介:  周安阳,中国人民解放军陆军装甲兵学院装备再制造技术国防科技重点实验室硕士研究生,在邢志国助理研究员的指导下进行研究。目前主要研究领域为材料表面工程。
引用本文:    
周安阳, 郭伟玲, 黄艳斐, 王志远, 王海斗, 邢志国. 磁场对合金材料服役性能影响的研究进展[J]. 材料导报, 2024, 38(10): 22110204-13.
ZHOU Anyang, GUO Weiling, HUANG Yanfei, WANG Zhiyuan, WANG Haidou, XING Zhiguo. Research Progress on the Effect of Magnetic Field on the Service Performance of Alloy Material. Materials Reports, 2024, 38(10): 22110204-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110204  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22110204
1 Li G R, Cheng J F, Wang H M, et al. Rare Metal Materials and Engineering, 2019, 10.
2 Li P, Zhang Y, Wang W Y, et al. Materials Science and Engineering A, 2021, 824, 141815.
3 Ju J, Hu L, Bao C W, et al. Materials, 2021, 14(10), 2514.
4 Lin C, Wu S S, Lü S L, et al. Intermetallics, 2013, 32, 176.
5 Rosa R, Colombini E, Veronesi P, et al. Journal of Materials Enginee-ring and Performance, 2012, 21(5), 725.
6 Franco V, Blázquez J S, Ingale B, et al. Annual Review of Materials Research, 2012, 42(1), 305.
7 Liu J, Gottschall T, Skokov K P, et al. Nature Materials, 2012, 11(7), 620.
8 He S Y, Li C J, Guo R, et al. Journal of Alloys and Compounds, 2019, 800, 41.
9 Zhou Y H, Huang T. Foundry, 1987(1), 32(in Chinese).
周尧和, 黄慆. 铸造, 1987(1), 32.
10 Naiya A K. Ceramics International, 2021, 47(20), 29000.
11 Galustashvili M V, Driaev D G, Kvatchadze V G. JETP Letters, 2019, 110(12), 785.
12 Zhang X, Cai Z P. JETP Letters, 2018, 108(1), 23.
13 Alshits V I, Darinskaya E V, Koldaeva M V, et al. Journal of Applied Physics, 2009, 105(6), 063520.
14 Osip’yan Y A, Nikolaev R K, Shmurak S Z, et al. Physics of the Solid State, 1999, 41(11), 1926.
15 Golovin Y I, Morgunov R B. Physics of the Solid State, 2001, 43(5), 859.
16 Yang Q, Jiang B, Song B, et al. Journal of Magnesium and Alloys, 2022, 10(2), 411.
17 Liu Z L, Hu H Y, Fan T Y. Journal of Beijing University of Technology, 2007(2), 113(in Chinese).
刘兆龙, 胡海云, 范天佑. 北京理工大学学报, 2007(2), 113.
18 Mohamad R, Chen J, Ruterana P. Computational Materials Science, 2020, 172, 109384.
19 Gavriljuk V G, Shyvaniuk V N, Teus S M. Journal of Alloys and Compounds, 2021, 886, 161260.
20 Cheng J F, Li G R, Wang H M, et al. Journal of Materials Engineering and Performance, 2018, 27(3), 1083.
21 Li G R, Cheng J F, Wang H M, et al. Materials Research Express, 2016, 3(10), 106507.
22 Li G R, Xue F, Wang H M, et al. Chinese Physics B, 2016, 25(10), 106201.
23 Li G R, Wang H M, Yuan X T, et al. Materials Letters, 2013, 99, 50.
24 Xu Q D, Li K J, Cai Z P, et al. Acta Metallurgica Sinica, 2019, 55(4), 489 (in Chinese).
许擎栋, 李克俭, 蔡志鹏, 等. 金属学报, 2019, 55(4), 489.
25 Billington D, Okazaki H, Toyoki K, et al. Acta Materialia, 2021, 205, 116517.
26 Armstrong A, Nilsén F, Rameš M, et al. Shape Memory and Superelasti-city, 2020, 6(1), 97.
27 Clark A E, Restorff J B, Wun-fogle M, et al. IEEE Transactions on Magnetics, 2000, 36(5), 3238.
28 Singh P K, Panda S K, Rath C. Sensors and Actuators A: Physical, 2021, 331, 112963.
29 Sun M, Huang W, Li L, et al. Journal of Alloys and Compounds, 2021, 856, 158178.
30 Diopl V B, Amara M, Isnard O. Applied Physics Letters, 2021, 118(26), 262409.
31 Chandrasekhar S. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1952, 43(340), 501.
32 Vakhrushev A, Kharicha A, Wu M, et al. IOP Conference Series: Materials Science and Engineering, 2020, 861(1), 012015.
33 Matthiesen D H, Wargo M J, Motakef S, et al. Journal of Crystal Growth, 1987, 85(3), 557.
34 Virbulis J, Wetzel T, Muiznieks A, et al. Journal of Crystal Growth, 2001, 230(1-2), 92.
35 Mikelson A E, Karklin Y K. Journal of Crystal Growth, 1981, 52, 524.
36 Polash M H, Vashaee D. Physica status solidi (RRL)-Rapid Research Letters, 2021, 15(10), 2100231.
37 Zhong H. On the mechanism of α-Al dendritic growth in the presence of high static magnetic field. Ph. D. Thesis, Shanghai University, China, 2017(in Chinese).
钟华. 强静磁场对α-Al枝晶生长过程调控机理的研究. 博士学位论文, 上海大学, 2017.
38 Walker J S, Cröll A, Szofran F R. Journal of Crystal Growth, 2001, 223(1-2), 73.
39 Li X, Fautrelle Y, Ren Z. Acta Materialia, 2007, 55(4), 1377.
40 Ren Z M. Materials China, 2010, 29(6), 40 (in Chinese).
任忠鸣. 中国材料进展, 2010, 29(6), 40.
41 Dold P, Szofran F R, Benz K W. Journal of Crystal Growth, 2006, 291(1), 1.
42 Li Q, Xia Z, Guo Y, et al. Metallurgical and Materials Transactions B, 2021, 52(3), 1495.
43 Polash M H, Vashaee D. Physical Review Applied, 2021, 15(1), 014011.
44 Chandrasheker J, Raju V S. Materials Today: Proceedings, 2021, 37, 1834.
45 Zhang Q. Technique and theory of semi-continuous casting of aluminum alloys under low-frequency electromagnetic field. Ph. D. Thesis, Nort-heastern University, China, 2003(in Chinese).
张勤. 低频电磁半连续铸造铝合金工艺及理论研究. 博士学位论文, 东北大学, 2003.
46 Natarajan T T, El-Kaddah N. Applied Mathematical Modelling, 2004, 28(1), 47.
47 Liu T, Wang Z Z. Southern Metals, 2021(1), 1 (in Chinese).
刘书涛, 王振哲. 南方金属, 2021(1), 1.
48 Luo L, Luo L, Su Y, et al. Journal of Materials Science & Technology, 2021, 74, 246.
49 Asai S, Sassa K, Tahashi M. Science and Technology of Advanced Materials, 2003, 4(5), 455.
50 Veligatla M, Titsch C, Drossel W G, et al. Acta Materialia, 2020, 186, 389.
51 Rivoirard S. Journal of Metals, 2013, 65(7), 901.
52 Ferreira P J, Liu H B, Sande J B V. Journal of Materials Research, 1999, 14(7), 2751.
53 Lees M R, Bourgault D, de Rango P, et al. Philosophical Magazine B, 1992, 65(6), 1395.
54 Xu Y, Casari D, Mathiesen R H, et al. Acta Materialia, 2018, 149, 312.
55 Hou H, Li Y, Xu X, et al. Materials Science and Technology, 2018, 34(4), 402.
56 Fu J W, Yang Y S. Journal of Materials Research, 2011, 26(14), 1688.
57 Viardin A, Zollinger J, Sturz L, et al. Computational Materials Science, 2020, 172, 109358.
58 He S, Shevchenko N, Eckert S, et al. Materials Science and Enginee-ring, 2020, 9.
59 Min Z X, Shen J, Feng Z R, et al. Journal of Crystal Growth, 2011, 320(1), 41.
60 Li L, Suo Y, Zhang R, et al. Journal of Applied Physics, 2019, 125(24), 245108.
61 Li G M, Liu Y, Zou X Z, et al. Journal of Functional Materials, 2013, 44(15), 2197 (in Chinese).
李贵茂, 柳艳, 邹兴政, 等. 功能材料, 2013, 44(15), 2197.
62 Shen Z, Ren L, Lin Z Z, et al. Chinese Journal of Nonferrous Metals, 2021, 31(5), 1134 (in Chinese).
沈喆, 任朗, 林中泽, 等. 中国有色金属学报, 2021, 31(5), 1134.
63 Luo L. Transactions of Nonferrous Metals Society of China, 2021, 13.
64 Li X, Fautrelle Y, Zaidat K, et al. Journal of Crystal Growth, 2010, 312(2), 267.
65 Du X D, Wang F, Wang Z, et al. Acta Metallurgica Sinica (English Letters), 2020, 33(9), 1259.
66 Wu Y, Tian Z, Liu F, et al. Materials Letters, 2021, 303, 130515.
67 Zhang L, Hu P H, Zhou Q, et al. Materials Letters, 2017, 193, 224.
68 Xu J, Hong B, Peng X, et al. Chemical Physics Letters, 2021, 767, 138368.
69 Hubert A. Physica Status Solidi (b), 1970, 38(2), 699.
70 Smith N. IEEE Transactions on Magnetics, 1991, 27(2), 729.
71 Xie S H, Liu X Y, Zhou Y C, et al. Journal of Applied Physics, 2011, 109(6), 063911.
72 Liu T, Gao P, Dong M, et al. AIP Advances, 2016, 6(5), 056216.
73 Zhang Y, Fang C, Huang Y, et al. Journal of Magnetism and Magnetic Materials, 2021, 540, 168327.
74 Ren J, Pan Q, Yang S, et al. International Journal of Applied Electromagnetics and Mechanics, 2010, 33(3-4), 1143.
75 Shao Q, Kang J J, Xing Z G, et al. Journal of Magnetism and Magnetic Materials, 2019, 476, 218.
76 Liu Y, Wang Q, Kazuhiko I, et al. Journal of Magnetism and Magnetic Materials, 2014, 357, 18.
77 Sechin D A, Nikolaeva E P, Pyatakov A P, et al. Solid State Phenomena, 2015, 233-234, 443.
78 Chen P, Liu T, Kong F, et al. Journal of Materials Science & Technology, 2018, 34(5), 793.
79 Fukuda T, Maeda H, Yasui M, et al. Scripta Materialia, 2009, 60(4), 261.
80 Jeong S, Inoue K, Inoue S, et al. Materials Science and Engineering A, 2003, 359(1-2), 253.
81 Wang F, Qian D, Hua L, et al. Materials Science and Engineering A, 2020, 771, 138623.
82 Schastlivtsev V M, Kaletina Y V, Fokina E A, et al. Metal Science and Heat Treatment, 2016, 58(5-6), 247.
83 Dong B Q, Hou T P, Wu K M, et al. Materials Letters, 2019, 240, 66.
84 Nawaz B, Long X, Yang Z, et al. Materials Science and Engineering A, 2019, 759, 11.
85 Ohtsuka H. Science and Technology of Advanced Materials, 2008, 9(1), 013004.
86 Li J, Liu W. Journal of Magnetism and Magnetic Materials, 2014, 362, 159.
87 Jaramillo R A, Babu S S, Ludtka G M, et al. Scripta Materialia, 2005, 52(6), 4616.
88 Enomoto M, Zhang G H, Wu K M. Solid State Phenomena, 2011, 172-174, 362.
89 Song J Y, Zhao X, Zhang Y D, et al. Steel Research International, 2011, 82(7), 836.
90 Wang L, Liu J, Yang Y, et al. The Chinese Journal of Nonferrous Me-tals, 2018, 28(5), 931 (in Chinese).
王琳, 刘剑, 杨屹, 等. 中国有色金属学报, 2018, 28(5), 931.
91 Sun Z H, Xing S Q, He S, et al. Rare Metal Materials and Engineering, 2022, 51(1), 273 (in Chinese).
孙中豪, 邢淑清, 贺帅, 等. 稀有金属材料与工程, 2022, 51(1), 273.
92 Yuan Z, Li C, Ma C, et al. Journal of Alloys and Compounds, 2015, 631, 86.
93 Wang H M, Peng C X, Li G R, et al. Rare Metal Materials and Engineering, 2017, 46(5), 1425 (in Chinese).
王宏明, 彭琮翔, 李桂荣, 等. 稀有金属材料与工程, 2017, 46(5), 1425.
94 Sheikh-Ali A D, Molodov D A, Garmestani H. Scripta Materialia, 2002, 46(12), 857.
95 Li H, Wang Y, Chen Q, et al. Chinese Science Bulletin, 1997, 42(24), 2064.
96 Konovalov S V, Zagulyaev D V, Yaropolova N G, et al. Russian Journal of Non-Ferrous Metals, 2015, 56(4), 441.
97 Rajasekhara S, Ferreira P J. Scripta Materialia, 2005, 53(7), 817.
98 Alshits V I, Darinskaya E V, Koldaeva M V, et al. Polish-Japanese Academy of Information Technology, 2017, 60(3), 125.
99 Luo J, Luo H, Zhao T, et al. Journal of Materials Science & Technology, 2021, 93, 128.
100 Hou M, Li K, Li X, et al. Crystals, 2020, 10(2), 115.
101 Wu G H, Hou T P, Wu K M, et al. Journal of Magnetism and Magnetic Materials, 2019, 479, 43.
102 Luan X S, Liang Z Q, Zhao W X, et al. Acta Metallurgica Sinica (English Letters), 2021, 57(10), 1272.
103 Li Q C, Li L J, Chang G W, et al. Journal of Iron and Steel Research International, 2015, 22(12), 1131.
104 Veligatla M, Garcia-cervera C J, Müllner P. Acta Materialia, 2020, 193, 221.
105 Fei H L, Wu H Y, Yang X D, et al. Journal of Manufacturing Processes, 2021, 69, 21.
106 Xiang Z L, Zhang L, Xin Y, et al. Materials & Design, 2021, 199, 109383.
107 Wang Y, Xing Z G, Huang Y F, et al. Journal of Magnetism and Magnetic Materials, 2021, 538, 168248.
108 Zou J, Lu D P, Liu K M, et al. Materials Transactions, 2015, 56(12), 2058.
109 Vdovin K N, Dubsky G A, Deev V B, et al. Russian Journal of Non-Ferrous Metals, 2019, 60(3), 247.
110 Yan M, Wang C, Luo T J, et al. Acta Metallurgica Sinica (English Letters), 2021, 34(1), 45.
111 Cai Z P, Huang X Q. Materials Science and Engineering A, 2011, 528(19-20), 6287.
112 Cai Z P, Zhao H Y, Lin J, et al. Materials Science and Engineering A, 2007, 458(1-2), 262.
113 Ma L P, Zhao W X, Liang Z Q, et al. Materials Science and Enginee-ring A, 2014, 609, 16.
114 Shao Q, Wang G, Wang H D, et al. Materials Science and Engineering A, 2021, 799, 140143.
115 Luo C, Li Z L, Cao H Z, et al. China Mechanical Engineering, 2016, 27(11), 1535 (in Chinese).
罗丞, 李正龙, 曹洪志, 等. 中国机械工程, 2016, 27(11), 1535.
116 Zhang X, Zhao Q, Cai Z P, et al. Metals, 2020, 10(1), 141.
117 Akram S, Babutskyi A, Chrysanthou A, et al. Wear, 2021, 484(5), 203.
118 Xie Y L, Sun C, Zhang Y Z, et al. Tribology Transactions, 2019, 62(5), 868.
119 Ma L P, Liang Z Q, Wang X B, et al. Acta Metallurgica Sinica, 2015, 51(3), 307.
120 Hou M D, Li K J, Li X G, et al. Crystals, 2020, 10(2), 115.
121 Chin K J, Zaidi H, Mathia T. Wear, 2005, 259(1-6), 477.
122 Zaïdi H, Amirat M, Frêne J, et al. Wear, 2007, 263(7-12), 1518.
123 Lida Y, Stolarski T. Wear, 2009, 266(11-12), 1098.
124 Sawaguchi T, Nikulin I, Ogawa K, et al. Acta Materialia, 2021, 220, 117267.
125 Bose M S C. Physica Status Solidi (a), 1984, 86(2), 649.
126 Pyttel B, SchwerdT D, Berger C. International Journal of Fatigue, 2011, 33(1), 49.
127 Qian C K, Li K J, Rui S S, et al. Journal of Alloys and Compounds, 2021, 881, 160471.
128 Zhang Y F, Fang C Y, Huang Y F, et al. Journal of Magnetism and Magnetic Materials, 2021, 540, 168327.
129 Lü B T, Qiao S R, Sun X Y. Scripta Materialia, 1999, 40(7), 767.
130 Çelik A, Fatih Y A, Alsaran A, et al. Materials & Design, 2005, 26(8), 700.
131 Miller P C. Tooling & Production, 1990, 55(12), 100.
132 Zhang L, Hu P H, Zhou Q, et al. Materials Letters, 2017, 193, 224.
133 Chouchane S, Levesque A, Zabinski P, et al. Journal of Alloys and Compounds, 2010, 506(2), 575.
134 Jiang C, Wang H, Chen X, et al. Electrochimica Acta, 2013, 112, 535.
135 Zhang X, Wang Z, Zhou Z, et al. Journal of Alloys and Compounds, 2017, 698, 241.
136 He X H. Effect of magnetic field solidification treatment on microstructure and electrochemical properties of low antimony rare earth lead alloy. Master’s Thesis, Central South University, China, 2007 (in Chinese).
贺小红. 磁场凝固处理对低锑稀土铅合金的微观结构和电化学性能的影响. 硕士学位论文, 中南大学, 2007.
137 Huang L P, Zhang X, Xiong Y M, et al. Journal of Chinese Society for Corrosion and Protection, 2022, 42(5), 833 (in Chinese).
黄连鹏, 张欣, 熊伊铭, 等. 中国腐蚀与防护学报, 2022, 42(5), 833.
138 Lu Z, Shoji T, Yang W. Corrosion Science, 2010, 52(8), 2680.
139 Sueptitz R, Koza J, Uhlemann M, et al. Electrochimica Acta, 2009, 54(8), 2229.
140 Ghabashy M A. Anti-Corrosion Methods and Materials, 1988, 35(1), 12.
141 Tian G, Wei A J, Huo F Y, et al. Pipeline Technique and Equipment, 2010(1), 50 (in Chinese).
田光, 魏爱军, 霍富永, 等. 管道技术与设备, 2010(1), 50.
142 Zheng B, Li K, Liu H, et al. Industrial & Engineering Chemistry Research, 2014, 53(1), 48.
143 Li K J, Zheng B J, Chen B, et al. Journal of Chinese Society for Corrosion and Protection, 2013, 33(6), 463 (in Chinese).
李克娟, 郑碧娟, 陈碧, 等. 中国腐蚀与防护学报, 2013, 33(6), 463.
[1] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[2] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[3] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[4] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[5] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[6] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[7] 陈琛, 陈昱林, 苏璇, 卢璟钰, 于俊杰, 张建, 吉卫喜. Al-Zn体系高压扭转过程中的相变机理[J]. 材料导报, 2024, 38(9): 22120148-6.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 李娇娇, 范婧, 王重. 非晶合金中剪切温升的研究进展[J]. 材料导报, 2024, 38(8): 22050070-8.
[12] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[13] 王丽红, 满蛟, 姜一鸣, 刘庚根, 周建平. 外加载荷对热弹性马氏体正-逆相变影响机制的相场模拟研究[J]. 材料导报, 2024, 38(8): 22070156-7.
[14] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[15] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed