Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 1026-1031    https://doi.org/10.11896/j.issn.1005-023X.2018.06.032
  计算模拟 |
Mg-Zn-Y合金中14H-LPSO相与W相的电子结构与弹性性能的第一性原理计算
徐志超1, 冯中学1, 史庆南1, 杨应湘2
1 昆明理工大学材料科学与工程学院,昆明 650093;
2 云南省新材料制备与加工重点实验室,昆明 650093
First-principles Calculations of Electronic Structures and Elastic Properties of 14H-LPSO and W Phases in Mg-Zn-Y Alloy
XU Zhichao1, FENG Zhongxue1, SHI Qingnan1, YANG Yingxiang2
1 Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 Key Laboratory of Advanced Materials of Yunnan Province, Kunming 650093
下载:  全 文 ( PDF ) ( 1837KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 运用密度泛函理论的第一性原理平面波赝势方法计算了14H-LPSO相和Mg3Y2Zn3(W相)的能带、态密度、电子结构及弹性常数,计算的晶格参数与实验值相吻合。能带结构和态密度分析计算结果显示,14H-LPSO 相成键能量范围主要在-8~3 eV之间,W相的成键能量范围主要在-8~0.5 eV之间。这表明LPSO相成键峰主要来自Mg3s、Zn4s、Y5s和4p轨道,W相的成键峰主要来自Mg3s、Zn3p和Y4d轨道。14H-LPSO相的(0001)面的电荷密度分析表明,Zn原子和Mg原子之间的电子云重叠较强,两者形成了较强的共价键;Zn原子和Y原子之间的电子云重叠较弱,形成较弱的共价键;W相的(011)面的电荷密度分析表明Zn 原子和 Y原子之间的电子云重叠较强,两者形成了较强的共价键。通过计算14H-LPSO相与W相的弹性常数,推导了体积模量、剪切模量、杨氏模量、泊松比、弹性各向异性系数的计算式。将两者与Mg基体进行比较,结果表明,三者的塑性关系为Mg基体>14H-LPSO相>W相,其中W相的硬度最大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐志超
冯中学
史庆南
杨应湘
关键词:  14H-LPSO  Mg3Y2Zn3  第一性原理  态密度  弹性常数  力学性能    
Abstract: The density of states, electronic structure and elastic constants of 14H-LPSO and W phase in Mg-Zn-Y alloy were analyzed by means of first-principles calculations from CASTEP program based on density functional theory (DFT). The calculated lattice parameters were consistent with the experimental and literature values. The calculated band structure and density of states demonstrates that the bonding of the 14-LPSO occur mainly among the valence electrons of Mg3s, Zn4s, Y5s, Y4p orbits, and the energy is in a range from -8 eV to 3 eV. Similarly, the bonding of the Mg3Y2Zn3 occur mainly among the valence electrons of Mg3s, Zn3p, Y4d orbits, and the energy is in a range from -8 eV to 0.5 eV. In addition, the charge densities respectively on (011) plane of Mg3Y2Zn3 phase and (0001) plane of 14H phase were analyzed, and the results indicate that the Zn-Y band exhibits covalent features, the covalent bonding of phase is stronger than that of 14-LPSO phase. According to the calculated elastic canstants, the bulk moduli, shear moduli, Yong’s moduli, Poisson’s ratio value and elastic anisotropy were derived. Furthermore, comparing the 14H-LPSO,W phase with Mg, the plasticity of the three phase is Mg>14H-LPSO>W. The W phase has the biggest hardness among three phases.
Key words:  14H-LPSO    Mg3Y2Zn3    first-principles calculation    density of states    elastic constants    mechanical property
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TG146.2+2  
基金资助: 云南省科技厅青年基金(2016FD033); 省级人培项目(KKSY201351055); 教育部博士点基金(20135314110003); 校重点基金(KKZ1201451001)
通讯作者:  冯中学,男,副教授,研究方向为稀土镁合金 E-mail:fzxue@163.com   
作者简介:  徐志超:男,1989年生,博士研究生,主要研究方向为稀土镁合金 E-mail:xzc@kmust.edu.cn
引用本文:    
徐志超, 冯中学, 史庆南, 杨应湘. Mg-Zn-Y合金中14H-LPSO相与W相的电子结构与弹性性能的第一性原理计算[J]. 材料导报, 2018, 32(6): 1026-1031.
XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang. First-principles Calculations of Electronic Structures and Elastic Properties of 14H-LPSO and W Phases in Mg-Zn-Y Alloy. Materials Reports, 2018, 32(6): 1026-1031.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.032  或          https://www.mater-rep.com/CN/Y2018/V32/I6/1026
1 Shao X H,Yang Z Q,Ma X L.Strengthening and toughening mecha-nisms in Mg-Zn-Y alloy with a long period stacking ordered structure[J].Acta Materialia,2010,58(14):4760.
2 Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM[J].Acta Materialia,2002,50(15):3845.
3 Zhu Y M, Morton A J, Nie J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys[J].Acta Materialia,2010,58(8):2936.
4 Chen B, Lin D L, Zeng X Q, et al. Hot rolling of AZ31 magnesium alloy and its effects on microstructure and mechanical properties[J].Materials Science Forum,2005,488-489:619.
5 Wang Q, Liu K, Wang Z, et al. Microstructure, texture and mechanical properties of as-extruded Mg-Zn-Er alloys containing W-phase[J].Journal of Alloys & Compounds,2014,602(602):32.
6 Benedetti C. Microstructure and mechanical properties of ultrafine grained Mg97Y2Zn1 alloy processed by equal channel angular pres-sing[J].Journal of Alloys & Compounds,2007,440(1-2):94.
7 Singh A, Watanabe M, Kato A, et al. Strengthening effects of icosahedral phase in magnesium alloys[J].Philosophical Magazine,2006,86(6-8):951.
8 Datta A, Waghmare U V, Ramamurty U. Structure and stacking faults in layered Mg-Zn-Y alloys:A first-principles study[J].Acta Materialia,2008,56(11):2531.
9 Wang W Y, Shang S L, Wang Y, et al. Electron localization morphology of the stacking faults in Mg: A first-principles study[J].Chemical Physics Letters,2012,551(551):121.
10 Ma Z N, Jiang M, Wang L. First principles study of electronic structures and phase stablities of tenary intermetallic compounds in Mg-Y-Zn alloys[J].Acta Physica Sinica,2015,64(18):418(in Chinese).
马振宁,蒋敏,王磊.Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究[J].物理学报,2015,64(18):418.
11 Sahlberg M, Andersson Y. Hydrogen absorption in Mg-Y-Zn ternary compounds[J].Journal of Alloys & Compounds,2007,446-447(11):134.
12 Shao G, Varsani V, Fan Z. Thermodynamic modelling of the Y-Zn and Mg-Zn-Y systems[J].Calphad-computer Coupling of Phase Diagrams & Thermochemistry,2006,30(3):286.
13 Zhu Y M, Weyland M, Morton A J, et al. The building block of long-period structures in Mg-RE-Zn alloys[J].Scripta Materialia,2009,60(11):980.
14 黄昆.固体物理学[M].北京:北京大学出版社,2014.
15 Yu W Y, Wang N, Xiao X B, et al. First-principles investigation of the binary AB 2 type Laves phase in Mg-Al-Ca alloy: Electronic structure and elastic properties[J].Solid State Sciences,2009,11(8):1400.
16 Anderson O L. A simplified method for calculating the debye temperature from elastic constants[J].Journal of Physics & Chemistry of Solids,1963,24(7):909.
17 Ma S Y, Liu L M, Wang S Q. Computer simulations of long-period stacking-ordered phase in Mg alloys[J].Scientific and Technical Information Technology and Application,2014,5(4):27(in Chinese).
马尚义,刘利民,王绍青.镁合金长周期堆垛有序相的计算模拟[J].科研信息化技术与应用,2014,5(4):27.
18 Tane M, Nagai Y, Kimizuka H, et al. Elastic properties of an Mg-Zn-Y alloy single crystal with a long-period stacking-ordered structure[J].Acta Materialia,2013,61(17):6338.
19 Slutsky L J, Garland C W. Elastic constants of magnesium from 4.2K to 300 K[J].Physical Review Superseded in Part by Physreva Physrevb Solid State Physrevc & Physrevd,1957,107(4):972.
20 Ma S Y, Liu L M, Wang S Q. The microstructure, stability, and elastic properties of 14H long-period stacking-ordered phase in Mg-Zn-Y alloys: A first-principles study[J].Journal of Materials Science,2014,49(2):737.
21 Chetty N, Weinert M. Stacking faults in magnesium[J].Physical Review B,1997,56(17):10844.
22 Pugh S F. Relations between the elastic moduli and the plastic pro-perties of polycrystalline pure metals[J].Philosophical Magazine,1954,45(367):823.
23 Wang F, Sun S J, Bo Y U, et al. First principles investigation of binary intermetallics in Mg-Al-Ca-Sn alloy: Stability, electronic structures, elastic properties and thermodynamic properties[J].Transactions of Nonferrous Metals Society of China,2016,26(1):203.
24 Chen Gang,Zhang Peng, et al. First-principles study of electronic structures, elastic properties and thermodynamics of the binary intermetallics in Mg-Zn-Re-Zr alloy[J].Defence Technology,2013,9(3):131.
25 Yoshimoto S, Yamasaki M, Kawamura Y. Microstructure and mechanical properties of extruded Mg-Zn-Y alloys with 14H long period ordered structure[J].Materials Transactions,2006,47(4):959.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[13] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[14] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[15] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed