Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 1026-1031    https://doi.org/10.11896/j.issn.1005-023X.2018.06.032
  计算模拟 |
Mg-Zn-Y合金中14H-LPSO相与W相的电子结构与弹性性能的第一性原理计算
徐志超1, 冯中学1, 史庆南1, 杨应湘2
1 昆明理工大学材料科学与工程学院,昆明 650093;
2 云南省新材料制备与加工重点实验室,昆明 650093
First-principles Calculations of Electronic Structures and Elastic Properties of 14H-LPSO and W Phases in Mg-Zn-Y Alloy
XU Zhichao1, FENG Zhongxue1, SHI Qingnan1, YANG Yingxiang2
1 Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 Key Laboratory of Advanced Materials of Yunnan Province, Kunming 650093
下载:  全 文 ( PDF ) ( 1837KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 运用密度泛函理论的第一性原理平面波赝势方法计算了14H-LPSO相和Mg3Y2Zn3(W相)的能带、态密度、电子结构及弹性常数,计算的晶格参数与实验值相吻合。能带结构和态密度分析计算结果显示,14H-LPSO 相成键能量范围主要在-8~3 eV之间,W相的成键能量范围主要在-8~0.5 eV之间。这表明LPSO相成键峰主要来自Mg3s、Zn4s、Y5s和4p轨道,W相的成键峰主要来自Mg3s、Zn3p和Y4d轨道。14H-LPSO相的(0001)面的电荷密度分析表明,Zn原子和Mg原子之间的电子云重叠较强,两者形成了较强的共价键;Zn原子和Y原子之间的电子云重叠较弱,形成较弱的共价键;W相的(011)面的电荷密度分析表明Zn 原子和 Y原子之间的电子云重叠较强,两者形成了较强的共价键。通过计算14H-LPSO相与W相的弹性常数,推导了体积模量、剪切模量、杨氏模量、泊松比、弹性各向异性系数的计算式。将两者与Mg基体进行比较,结果表明,三者的塑性关系为Mg基体>14H-LPSO相>W相,其中W相的硬度最大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐志超
冯中学
史庆南
杨应湘
关键词:  14H-LPSO  Mg3Y2Zn3  第一性原理  态密度  弹性常数  力学性能    
Abstract: The density of states, electronic structure and elastic constants of 14H-LPSO and W phase in Mg-Zn-Y alloy were analyzed by means of first-principles calculations from CASTEP program based on density functional theory (DFT). The calculated lattice parameters were consistent with the experimental and literature values. The calculated band structure and density of states demonstrates that the bonding of the 14-LPSO occur mainly among the valence electrons of Mg3s, Zn4s, Y5s, Y4p orbits, and the energy is in a range from -8 eV to 3 eV. Similarly, the bonding of the Mg3Y2Zn3 occur mainly among the valence electrons of Mg3s, Zn3p, Y4d orbits, and the energy is in a range from -8 eV to 0.5 eV. In addition, the charge densities respectively on (011) plane of Mg3Y2Zn3 phase and (0001) plane of 14H phase were analyzed, and the results indicate that the Zn-Y band exhibits covalent features, the covalent bonding of phase is stronger than that of 14-LPSO phase. According to the calculated elastic canstants, the bulk moduli, shear moduli, Yong’s moduli, Poisson’s ratio value and elastic anisotropy were derived. Furthermore, comparing the 14H-LPSO,W phase with Mg, the plasticity of the three phase is Mg>14H-LPSO>W. The W phase has the biggest hardness among three phases.
Key words:  14H-LPSO    Mg3Y2Zn3    first-principles calculation    density of states    elastic constants    mechanical property
               出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TG146.2+2  
基金资助: 云南省科技厅青年基金(2016FD033); 省级人培项目(KKSY201351055); 教育部博士点基金(20135314110003); 校重点基金(KKZ1201451001)
通讯作者:  冯中学,男,副教授,研究方向为稀土镁合金 E-mail:fzxue@163.com   
作者简介:  徐志超:男,1989年生,博士研究生,主要研究方向为稀土镁合金 E-mail:xzc@kmust.edu.cn
引用本文:    
徐志超, 冯中学, 史庆南, 杨应湘. Mg-Zn-Y合金中14H-LPSO相与W相的电子结构与弹性性能的第一性原理计算[J]. 材料导报, 2018, 32(6): 1026-1031.
XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang. First-principles Calculations of Electronic Structures and Elastic Properties of 14H-LPSO and W Phases in Mg-Zn-Y Alloy. Materials Reports, 2018, 32(6): 1026-1031.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.032  或          http://www.mater-rep.com/CN/Y2018/V32/I6/1026
1 Shao X H,Yang Z Q,Ma X L.Strengthening and toughening mecha-nisms in Mg-Zn-Y alloy with a long period stacking ordered structure[J].Acta Materialia,2010,58(14):4760.
2 Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM[J].Acta Materialia,2002,50(15):3845.
3 Zhu Y M, Morton A J, Nie J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys[J].Acta Materialia,2010,58(8):2936.
4 Chen B, Lin D L, Zeng X Q, et al. Hot rolling of AZ31 magnesium alloy and its effects on microstructure and mechanical properties[J].Materials Science Forum,2005,488-489:619.
5 Wang Q, Liu K, Wang Z, et al. Microstructure, texture and mechanical properties of as-extruded Mg-Zn-Er alloys containing W-phase[J].Journal of Alloys & Compounds,2014,602(602):32.
6 Benedetti C. Microstructure and mechanical properties of ultrafine grained Mg97Y2Zn1 alloy processed by equal channel angular pres-sing[J].Journal of Alloys & Compounds,2007,440(1-2):94.
7 Singh A, Watanabe M, Kato A, et al. Strengthening effects of icosahedral phase in magnesium alloys[J].Philosophical Magazine,2006,86(6-8):951.
8 Datta A, Waghmare U V, Ramamurty U. Structure and stacking faults in layered Mg-Zn-Y alloys:A first-principles study[J].Acta Materialia,2008,56(11):2531.
9 Wang W Y, Shang S L, Wang Y, et al. Electron localization morphology of the stacking faults in Mg: A first-principles study[J].Chemical Physics Letters,2012,551(551):121.
10 Ma Z N, Jiang M, Wang L. First principles study of electronic structures and phase stablities of tenary intermetallic compounds in Mg-Y-Zn alloys[J].Acta Physica Sinica,2015,64(18):418(in Chinese).
马振宁,蒋敏,王磊.Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究[J].物理学报,2015,64(18):418.
11 Sahlberg M, Andersson Y. Hydrogen absorption in Mg-Y-Zn ternary compounds[J].Journal of Alloys & Compounds,2007,446-447(11):134.
12 Shao G, Varsani V, Fan Z. Thermodynamic modelling of the Y-Zn and Mg-Zn-Y systems[J].Calphad-computer Coupling of Phase Diagrams & Thermochemistry,2006,30(3):286.
13 Zhu Y M, Weyland M, Morton A J, et al. The building block of long-period structures in Mg-RE-Zn alloys[J].Scripta Materialia,2009,60(11):980.
14 黄昆.固体物理学[M].北京:北京大学出版社,2014.
15 Yu W Y, Wang N, Xiao X B, et al. First-principles investigation of the binary AB 2 type Laves phase in Mg-Al-Ca alloy: Electronic structure and elastic properties[J].Solid State Sciences,2009,11(8):1400.
16 Anderson O L. A simplified method for calculating the debye temperature from elastic constants[J].Journal of Physics & Chemistry of Solids,1963,24(7):909.
17 Ma S Y, Liu L M, Wang S Q. Computer simulations of long-period stacking-ordered phase in Mg alloys[J].Scientific and Technical Information Technology and Application,2014,5(4):27(in Chinese).
马尚义,刘利民,王绍青.镁合金长周期堆垛有序相的计算模拟[J].科研信息化技术与应用,2014,5(4):27.
18 Tane M, Nagai Y, Kimizuka H, et al. Elastic properties of an Mg-Zn-Y alloy single crystal with a long-period stacking-ordered structure[J].Acta Materialia,2013,61(17):6338.
19 Slutsky L J, Garland C W. Elastic constants of magnesium from 4.2K to 300 K[J].Physical Review Superseded in Part by Physreva Physrevb Solid State Physrevc & Physrevd,1957,107(4):972.
20 Ma S Y, Liu L M, Wang S Q. The microstructure, stability, and elastic properties of 14H long-period stacking-ordered phase in Mg-Zn-Y alloys: A first-principles study[J].Journal of Materials Science,2014,49(2):737.
21 Chetty N, Weinert M. Stacking faults in magnesium[J].Physical Review B,1997,56(17):10844.
22 Pugh S F. Relations between the elastic moduli and the plastic pro-perties of polycrystalline pure metals[J].Philosophical Magazine,1954,45(367):823.
23 Wang F, Sun S J, Bo Y U, et al. First principles investigation of binary intermetallics in Mg-Al-Ca-Sn alloy: Stability, electronic structures, elastic properties and thermodynamic properties[J].Transactions of Nonferrous Metals Society of China,2016,26(1):203.
24 Chen Gang,Zhang Peng, et al. First-principles study of electronic structures, elastic properties and thermodynamics of the binary intermetallics in Mg-Zn-Re-Zr alloy[J].Defence Technology,2013,9(3):131.
25 Yoshimoto S, Yamasaki M, Kawamura Y. Microstructure and mechanical properties of extruded Mg-Zn-Y alloys with 14H long period ordered structure[J].Materials Transactions,2006,47(4):959.
[1] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[4] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[5] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[6] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[7] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[8] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[11] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[12] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[13] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[14] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[15] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed