Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 127-131    https://doi.org/10.11896/j.issn.1005-023X.2017.010.026
  计算模拟 |
三元正极材料LiNi1/3Co1/3Mn1/3O2的结构及第一性原理计算*
赵小康,王海东,万巍,郭慧
中南大学资源加工与生物工程学院, 长沙 410083
First-principles Study on Structure of Ternary Cathode Material LiNi1/3Co1/3Mn1/3O2
ZHAO Xiaokang, WANG Haidong, WAN Wei, GUO Hui
School of Minerals Processing and Bioengineering,Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 1341KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以共沉淀法、喷雾干燥法制备了三元正极材料LiNi1/3Co1/3Mn1/3O2,应用基于密度泛函理论的第一性原理计算方法,与实验制备的LiNi1/3Co1/3Mn1/3O2进行对比,对3种不同的预想结构模型(堆叠结构、随机排列结构、超晶格结构)进行研究。实验结果表明,两种方法制备的三元材料都具有良好的层状结构,其中共沉淀法制备的层状结构更加明显,而喷雾干燥法制备的材料中过渡金属元素比更接近LiNi1/3Co1/3Mn1/3O2的化学计量比。计算结果表明,随机排列的结构模型能量最低、最稳定,与实验制备的三元正极材料结构最为相似。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵小康
王海东
万巍
郭慧
关键词:  正极材料  LiNi1/3Co1/3Mn1/3O2  第一性原理  随机排列结构    
Abstract: LiNi1/3Co1/3Mn1/3O2 as a promising cathode material was synthesized via co-precipitation and spray drying methods.The comparison between the prepared LiNi1/3Co1/3Mn1/3O2 and the three anticipated structure models (stacking, random and superlattice) were studied by the first-principle calculation.The experimental results show that both synthesized materials have good layer structure.The material synthesized via co-precipitation has a more obvious layer structure.As for the material prepared by spray drying method, the stoichiometric ratio among the transition metal element is closer to LiNi1/3Co1/3Mn1/3O2.Calculated results indicate that the random structure model has the lowest energy,which is most consistent with the experimental results.
Key words:  cathode material    LiNi1/3Co1/3Mn1/3O2    first-principles    random structure
                    发布日期:  2018-05-08
ZTFLH:  O614.111  
基金资助: *国家自然科学基金(51474237)
通讯作者:  王海东,男,1963年生,博士,教授,研究方向为材料计算与设计、矿物材料E-mail:joewhd@126.com   
作者简介:  赵小康:男,1992年生,硕士研究生,研究方向为高性能无机材料E-mail:hunanzxk@163.com
引用本文:    
赵小康,王海东,万巍,郭慧. 三元正极材料LiNi1/3Co1/3Mn1/3O2的结构及第一性原理计算*[J]. 材料导报编辑部, 2017, 31(10): 127-131.
ZHAO Xiaokang, WANG Haidong, WAN Wei, GUO Hui. First-principles Study on Structure of Ternary Cathode Material LiNi1/3Co1/3Mn1/3O2. Materials Reports, 2017, 31(10): 127-131.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.026  或          http://www.mater-rep.com/CN/Y2017/V31/I10/127
1 Zhu G Y,Liu X S,Pan L,et al.Investigations of Li[Ni1/3Co1/3-Mn1/3]O2 cathode material for power lithium-ion batteries[J].J Power Sources,2009,33(7):547.
2 Yu H G,Wang H,Sheng J.Recent progress in cobalt/nickel/manganese oxidesas positive electrode materials[J].Chinese J Power Sources,2014,38(9):1749(in Chinese).
俞会根,王恒,盛军.三元正极材料Li[Ni-Co-Mn]O2的研究进展[J].电源技术,2014,38(9):1749.
3 Guo Y R,Yan H Y,Song Q G,et al.First-principles study on electronic structure and optical properties of Ni-doped CdS[J].Mater Rev:Res,2016,30(3):130(in Chinese).
郭艳蕊,严慧羽,宋庆功,等.Ni掺杂CdS电子结构和光学性质的第一性原理计算[J].材料导报:研究篇,2016,30(3):130.
4 Ohzuku T,Koyama Y,Yabuuchi N,et al.Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries[J].J Electrochem Soc,2004,151(10):A1445.
5 Vanderbilt D.Soft-consistent pseudopotentials in a generalized eigenvalue formalism[J].Phys Rev B,1990,41(11):7892.
6 Perdew J P,Burke K,Ernzerhof M.Generalized gradient approximation made simple[J].Phys Rev Lett,1996,77(18):3865.
7 Monkhorst H J,Pack J D.Special points for brillouin-zone integrations[J]. Phys Rev B,1976,13:5188.
8 Fischer T H,Almlof J.General methods for geometry and wave function optimization[J].J Chem Phys,1992,96(24):9768.
9 Kim J H,Yoon C S,Sun Y K.Structural characterization of Li[Li0.1-Ni0.35Mn0.55]O2 cathode material for lithium secondary batteries[J].J Electrochem Soc,2003,150(4):A538.
10 Liu H,Yao Y C,Li Y M,et al.Research of synthesis and electrochemical performance of three layered cathode material[J].Mater Rev:Res,2012,26(5):100(in Chinese).
刘环,姚耀春,李永梅,等.三元层状正极材料的制备与电化学性能研究[J].材料导报:研究篇,2012,26(5):100.
11 Park K S,Cho M H,Jin S J,et al.Structural and electrochemical properties of nanosize layered Li[Li1/5Ni1/10Co1/5Mn1/2]O2[J].Electrochem Solid-State Lett,2004,7(8):A239.
12 Dahn J R,Sacken U,Michal C A.Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure[J].Solid State Ionics,1990,44(1-2):87.
[1] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[2] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[3] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[4] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[5] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[6] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[7] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[8] 宋政骢, 米国发, 王有超, 刘晨, 历长云. W-Re二元合金弹性和热力学性质的第一性原理计算[J]. 材料导报, 2019, 33(16): 2785-2792.
[9] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[10] 徐志超, 冯中学, 史庆南, 杨应湘. Mg-Zn-Y合金中14H-LPSO相与W相的电子结构与弹性性能的第一性原理计算[J]. 材料导报, 2018, 32(6): 1026-1031.
[11] 宋庆功, 许科, 顾威风, 甄丹丹, 郭艳蕊, 胡雪兰. Zr和Mo双掺杂γ-TiAl基合金的稳定性与延性预测[J]. 材料导报, 2018, 32(18): 3154-3160.
[12] 李之锋, 罗垂意, 王春香, 钟盛文, 张骞. 无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究[J]. 《材料导报》期刊社, 2018, 32(14): 2329-2334.
[13] 胡洁琼, 谢明, 陈永泰, 陈松, 张吉明, 王塞北. Pt-M(M=Fe, Co, Ni)金属间化合物电子结构和弹性性质的[J]. 《材料导报》期刊社, 2018, 32(14): 2467-2474.
[14] 李超, 马成章, 黄绍军, 闵春刚, 黄秋玲, 孙晓东. 含1,3,4-噻二唑环聚合物的合成及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1891-1902.
[15] 梁兴, 高国华, 吴广明. 氧化钒作锂离子电池正极材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 12-33.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed