Please wait a minute...
材料导报  2019, Vol. 33 Issue (16): 2793-2798    https://doi.org/10.11896/cldb.18050310
  金属与金属基复合材料 |
基于Gerber模型的DFR腐蚀折算系数及其试验测定
陈跃良, 吴省均, 卞贵学, 张勇, 王安东, 黄海亮, 张柱柱
海军航空大学青岛校区,青岛 266041
Theoretical and Experimental Determination of DFR-corrosion-influence-factors Based on Gerber Model
CHEN Yueliang, WU Xingjun, BIAN Guixue, ZHANG Yong, WANG Andong, HUANG Hailiang, ZHANG Zhuzhu
Naval Aeronautical University Qingdao Branch, Qingdao 266041
下载:  全 文 ( PDF ) ( 1884KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了将细节疲劳额定值(DFR)法的适用范围扩展到腐蚀条件下,采用腐蚀折算系数对DFR进行当量折算的方法,建立了基于Gerber模型的DFR法在腐蚀条件下的分析方法,并通过腐蚀折算系数的分解使此法可用于单独研究地面预腐蚀和空中腐蚀疲劳对DFR的影响。通过设置九组不同时长(0 h、6 h、12 h、24 h、36 h、72 h、108 h、144 h和180 h)的预腐蚀疲劳试验,测定了2024-T3铝合金的地面停放腐蚀折算系数;比较了基于Gerber模型和Goodman模型的DFR法在一般条件和腐蚀条件下的计算结果。结果表明:随着预腐蚀时间的延长,2024-T3铝合金的细节疲劳额定值截止值(DFRcutoff)下降;在九组不同时长下,基于Gerber模型计算的DFRcutoff依次为84.251 MPa、84.722 MPa、79.683 MPa、80.745 MPa、77.026 MPa、74.996 MPa、75.613 MPa、76.186 MPa和73.798 MPa,地面停放腐蚀折算系数为1、1.006、0.946、0.958、0.914、0.890、0.897、0.904、0.876,拟合得到DFRcutoff与预腐蚀时长满足:DFRcutoff=84.521[lg(t+10)]-0.149 8。在未考虑腐蚀影响的条件下N95/95>105时,考虑腐蚀影响的条件下N1>105时,基于Gerber模型计算的DFR均大于基于Goodman模型的计算结果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈跃良
吴省均
卞贵学
张勇
王安东
黄海亮
张柱柱
关键词:  预腐蚀疲劳试验  细节疲劳额定值(DFR)  腐蚀折算系数    
Abstract: In order to extend the applicability of the new DFR method to corrosion conditions, via transfer the influence of corrosion environment on fatigue life to the DFR equivalently, the DFR method based on Gerber model under corrosive environment for fatigue analysis was established, and the decomposition of DFR-corrosion-influence-factors enables this method to study the effect of ground-corrosion-influence and air-corrosion-fatigue-influence on DFR independently. The ground-corrosion-influence-factor of 2024-T3 aluminum alloy was determined by nine different pre-corrosion fatigue tests. Under normal conditions and corrosion conditions, the calculation results of the DFR method based on Goodman model and Gerber model were compared. Results show that as the pre-corrosion time increases, the DFRcutoff of 2024-T3 aluminum alloy decreases; the DFRcutoff based on Gerber model are 84.251 MPa, 84.722 MPa, 79.683 MPa, 80.745 MPa, 77.026 MPa, 74.996 MPa, 75.613 MPa, 76.186 MPa and 73.798 MPa respectively, and the ground-corrosion-influence-factor is 1, 1.006, 0.946, 0.958, 0.914, 0.890, 0.897, 0.904, 0.876 the fitting curve of the DFRcutoff with the pre-corrosion time is DFRcutoff=84.521[lg(t+10)]-0.149 8. Calculating found under the condition of neglecting the influence of corrosions when N95/95>105 cycle, under the condition of considering the influence of corrosions when N1>105 cycle, the calculation results of DFR method based on Gerber model is greater than that of DFR method based on Goodman model.
Key words:  pre-corrosive fatigue test    detail fatigue rating (DFR)    corrosion-influence-factor
                    发布日期:  2019-07-12
ZTFLH:  V252.2  
基金资助: 国家自然科学基金(51375490)
作者简介:  陈跃良,1962年生,博士,教授,博士研究生导师,主要从事飞机结构强度,腐蚀与防护等研究。
吴省均,1994年生,海军航空大学博士研究生,研究方向为飞机结构强度。
引用本文:    
陈跃良, 吴省均, 卞贵学, 张勇, 王安东, 黄海亮, 张柱柱. 基于Gerber模型的DFR腐蚀折算系数及其试验测定[J]. 材料导报, 2019, 33(16): 2793-2798.
CHEN Yueliang, WU Xingjun, BIAN Guixue, ZHANG Yong, WANG Andong, HUANG Hailiang, ZHANG Zhuzhu. Theoretical and Experimental Determination of DFR-corrosion-influence-factors Based on Gerber Model. Materials Reports, 2019, 33(16): 2793-2798.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050310  或          http://www.mater-rep.com/CN/Y2019/V33/I16/2793
[1] Goranson U G. International Journal of Fatigue, 1994, 16(1),43.
[2] Chen X M, Liao J H, Dong D K, et al. Journal of Machine Design, 2014(12),16 (in Chinese).
陈先民, 廖江海, 董登科, 等. 机械设计, 2014(12),16.
[3] Liu W T. Military aircraft structural fatigue design detail fatigue rating methodological guide, National Defense Industry Press, China, 2012 (in Chinese).
刘文珽. 军用飞机结构疲劳设计细节疲劳额定值方法指南, 国防工业出版社, 2012.
[4] Li G L, Xue J C. Aircraft Design, 2008, 28(6),35 (in Chinese).
李戈岚, 薛俊川. 飞机设计, 2008, 28(6),35.
[5] Yang Y G, Xue J C, Jiao K F, et al. Journal of Mechanical Strength, 2004, 26(s1),52 (in Chinese).
杨玉恭, 薛景川, 焦坤芳,等. 机械强度, 2004, 26(s1),52.
[6] Dong D K, Yang Y G, Xue J C, et al. In: National Conference on Structural Engineering. Xinjiang, 2013, pp.196 (in Chinese).
董登科, 杨玉恭, 薛景川,等. 全国结构工程学术会议. 新疆, 2013, pp.196.
[7] Gong Y S, Xie Y H, Zang M, et al. Study of Structural Srength, 2006(3),38 (in Chinese).
弓云昭, 谢宇航, 张茂,等. 结构强度研究, 2006(3),38.
[8] Guan D, Sun Q. Journal of Mechanical Strength, 2012, 34(1),131 (in Chinese).
关迪, 孙秦. 机械强度, 2012, 34(1),131.
[9] Chen X M, Dong D K, Li S S. Chinese Journal of Applied Mechanics, 2014 (3), 473 (in Chinese).
陈先民, 董登科, 李珊山. 应用力学学报, 2014 (3), 473.
[10] Huang X, Liu J Z, Ma S J, et al. Acta Aeronautica et Astronautica Sinica, 2012, 33(5),863 (in Chinese).
黄啸, 刘建中, 马少俊,等. 航空学报, 2012, 33(5),863.
[11] Fan J L. Journal of Aeronautical Materials, 2016, 36(2),80 (in Chinese).
樊俊铃. 航空材料学报, 2016, 36(2),80.
[12] Zhang J Y, Bao R, Chen B, et al. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(6),547 (in Chinese).
张建宇, 鲍蕊, 陈勃,等. 北京航空航天大学学报, 2004, 30(6),547.
[13] Bao R, Zhang J Y, Zheng X L, et al. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(6),639 (in Chinese).
鲍蕊, 张建宇, 郑晓玲,等. 北京航空航天大学学报, 2006, 32(6),639.
[14] Li Y H, Liu W T, Jiang D B, et al. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(1),30(in Chinese).
李玉海, 刘文珽, 蒋冬滨,等. 北京航空航天大学学报, 2002, 28(1),30.
[15] Zhang J Y, Liu A M, Fei B J. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(5),556(in Chinese).
张建宇, 刘爱民, 费斌军. 北京航空航天大学学报, 2000, 26(5),556.
[16] He X F, Liu W T, Wang Z B, et al. Journal of Mechanical Strength, 2009, 31(4),664(in Chinese).
贺小帆, 刘文珽, 王忠波,等. 机械强度, 2009, 31(4),664.
[17] Bian G X, Chen Y L, Zhang D F, et al. Acta Aeronautica et Astronautica Sinica, 2008, 29(6),1526(in Chinese).
卞贵学, 陈跃良, 张丹峰,等. 航空学报, 2008, 29(6),1526.
[18] Deng J H, Chen J P, Fu Y. Acta Aeronautica et Astronautica Sinica, 2018(2),146(in Chinese).
邓景辉, 陈平剑, 付裕. 航空学报, 2018(2),146.
[19] Li Y B, Chen L, Dong D K, et al. Journal of Mechanical Strength, 2012, 34(6), 934(in Chinese).
李宴宾, 陈莉, 董登科, 等. 机械强度, 2012, 34(6), 934.
[20] Xue J C, Guo D W, Shao C. Study of Structural Strength, 2006(1),1(in Chinese).
薛景川, 郭定文, 邵闯. 结构强度研究, 2006(1),1.
[1] 陈跃良, 王安东, 卞贵学, 张勇. CF8611/AC531复合材料的电化学特性及其与7B04-T74铝合金的电偶腐蚀仿真[J]. 材料导报, 2018, 32(16): 2889-2896.
[2] 陈跃良,王安东,张 勇,卞贵学,黄海亮. Cl-和H+对2024-T3铝合金初期腐蚀的协同效应[J]. 《材料导报》期刊社, 2018, 32(9): 1549-1556.
[3] 尚根峰, 黄嘉鹏, 汪航. Y,La改性Ni-10Cr-5Al合金的循环氧化行为研究[J]. 《材料导报》期刊社, 2018, 32(4): 584-588.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed