Please wait a minute...
材料导报  2019, Vol. 33 Issue (16): 2799-2803    https://doi.org/10.11896/cldb.18070136
  高分子与聚合物基复合材料 |
等离子体处理二氧化硅对剪切增稠液体含浸芳纶织物防刺性能的影响
刘星1, 2, 霍俊丽1, 李婷婷1, 2, 林佳弘1, 2, 3, 4, 楼静文1, 2, 4, 5,
1 天津工业大学纺织科学与工程学院,智慧纺织与节能制品创新平台,天津 300387
2 天津工业大学教育部与天津市共建先进复合材料重点实验室,天津 300387
3 中国台湾逢甲大学纤维与复合材料学系,纤维应用与制造实验室,中国台中 40724
4 闽江学院海洋学院,福州 3501085 中国亚洲大学生物信息与医学工程学系,中国台中 41354
Effect of Plasma-treated Silica on the Stab Resistance of Shear Thickening Fluid Impregnated Aramid Fabrics
LIU Xing1,2, HUO Junli1, LI Tingting1,2, LIN Jiahong1,2,3,4, LOU Chingwen1,2,4,5 1
Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387
2 Tianjin and Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Tianjin Polytechnic University, Tianjin 300387
3 Department of Fiber and Composite Materials, Feng Chia University China, Taichung 40724, China
4 Department of Chemical Engineering and Materials, Ocean College, Minjiang University, Fuzhou 350108
5 Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, China
下载:  全 文 ( PDF ) ( 2569KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了实现柔性防刺装甲的轻量化以提升装甲的可穿戴性,本研究通过等离子体处理剪切增稠液(STF)中的二氧化硅粒子,以增强其剪切增稠性能,从而探讨等离子体处理对剪切增稠液含浸复合织物防刺性能的影响。利用PR-3型等离子发生器、扫描电镜(Gemini SEM500)、马尔文旋转流变仪、傅里叶变换红外光谱仪、体式显微镜(Nikon SMZ-10A)、万能强力机对等离子体处理二氧化硅(SiO2)剪切增稠流体的流变性能,及STF含浸芳纶织物的拉伸、刀刺和锥刺性能影响进行研究。结果表明,经等离子体处理后,剪切增稠流体的临界剪切速率降至23.2 s-1;纯芳纶织物锥刺载荷为23.34 N,经等离子体处理后增加到41.13 N,提高76%。经过等离子体处理的SiO2粒子表面被刻蚀,活性基团数量增加,粒子之间的摩擦阻力也增大,从而使STF的临界剪切速率减小。基于本研究的结果,可成功制备低成本、高强度的抗穿刺复合织物。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘星
霍俊丽
李婷婷
林佳弘
楼静文
关键词:  芳纶织物  剪切增稠液  等离子体处理  防刺性能    
Abstract: In order to obtain the lightweight of flexible stab resistance armor to enhance its wearable, this study uses plasma treatment of silica particles in shear thickening fluid (STF) to enhance its shear thickening performance, so as to explore the impact of plasma treatment on the stab resistance performance of shear thickening fabric containing immersion. This research use PR-3 type plasma generator, scanning electron microscopy (Gemini SEM500), malvin rotational rheometer, Fourier transform infrared spectrometer, asana microscope (Nikon SMZ-10A), universal power machine on plasma processing silica (SiO2) the rheological properties of shear thickening fluid, and STF dipped aramid fabric tensile, stab sword and cone performance effects were studied. The results showed that the critical shear rate of shear thickening fluid dropped to 23.2 s-1 after plasma treatment. The cone loading of pure aramid fiber fabric was 23.34 N, increased to 41.13 N after plasma treatment and increased by 76%. As the plasma treated SiO2 particles are etched, the active groups on the particle surface are increased, and the friction resistance between particles increases, which reduces the critical shear rate. Based on the results of this study, low cost and high strength anti-puncture composite fabrics were successfully prepared.
Key words:  aramid fabric    shear thickening fluid    plasma treatment    stab resistance property
                    发布日期:  2019-07-12
ZTFLH:  TB332  
基金资助: 天津市高等学校创新团队项目(TD13-5043);国家自然科学基金项目(51503145;11702187;11602168);天津市自然科学基金(18JCQNJC03400); 福建省自然科学基金(2018J01505;2018J01504)
作者简介:  刘星,天津工业大学讲师,入选2012年度天津市高等学校优秀教师人才项目。2003年3月至2009年3月,在韩国国立金乌工业大学获得高分子材料专业硕士博士学位,毕业后回国于天津工业大学任教。在国内外学术期刊上发表论文20余篇,申请国家发明专利6项,其中授权3项。研究工作主要围绕国家重点发展的功能智能新材料,开展关于柔性智能材料的先进制备技术以及结构性能控制相关的基础理论和应用研究,主持包括国家自然科学基金青年项目、教育部博士点基金项目以及企业合作项目等。
楼静文,特聘教授,博士研究生导师,2002年取得中国台湾逢甲大学纺织工程学博士学位,同时任职于天津工业大学之天津市“千人计划”特聘教授,闽江学院“闽江学者”讲座教授,中国台湾逢甲大学纤维与复合材料学系教授, Textile Research Journal、Composite A Journal、Composite B Journal等20余家SCI 国际期刊审查委员。总计发表有439篇学术期刊论文(其中SCI期刊243篇)、国际学术研讨会论文718篇,执行92件跨领域及产学研究项目,拥有30项技术专利、已指导培育硕士及博士超过百人。
引用本文:    
刘星, 霍俊丽, 李婷婷, 林佳弘, 楼静文. 等离子体处理二氧化硅对剪切增稠液体含浸芳纶织物防刺性能的影响[J]. 材料导报, 2019, 33(16): 2799-2803.
LIU Xing, HUO Junli, LI Tingting, LIN Jiahong, LOU Chingwen 1. Effect of Plasma-treated Silica on the Stab Resistance of Shear Thickening Fluid Impregnated Aramid Fabrics. Materials Reports, 2019, 33(16): 2799-2803.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070136  或          http://www.mater-rep.com/CN/Y2019/V33/I16/2799
[1] Nascimento L F C, Louro L H L, Monteiro S N, et al. JOM, 69(10), 2052.
[2] Croitoro E M, Boros I E. Sanctions of the Canadian Society for Mechanical Engineering, 2007, 31(2), 157.
[3] Miao X H, Kong X Y, Jiang G M. Journal of Industrial, 2013, 43(2), 281.
[4] Flambard X, Polo J. Advanced Materials, 2014, 36(1), 30.
[5] Sun L L, Xiong D S, Xu C Y. Journal of Applied Polymer Science, 2013, 129(4), 1922.
[6] Hou L G, Liu Y C, Zeng L K. China Ceramics Industry, 2013, 20(1), 25 (in Chinese).
侯来广, 刘艳春, 曾令可. 中国陶瓷工业, 2013, 20(1), 25.
[7] Peng C Y. Preparation and performance of shear thickening liquid-carbon fiber composites. Master’s Thesis, Dalian University of Technology, China, 2015 (in Chinese).
彭传玉. 剪切增稠液-碳纤维复合材料的制备与性能研究. 硕士学位论文, 大连理工大学, 2015.
[8] Miao X, Kong X, Jiang G. Industrial Textile, 2012, 43(2), 281.
[9] Lepore E, Bosia F, Bonaccorso F, et al. 2D Materials. 2018, 5(4), 049501.
[10] Laha A, Majumdar A. Materials & Design, 2016, 89, 286.
[11] Baharvandi H R, Saeedi H M, Kordani N, et al. The Journal of the Textile Institute, 2016, 108(3), 397.
[12] Haro E E, Szpunar J A, Odeshi A G. Composites Part A: Applied Science and Manufacturing, 2016, 87, 54.
[13] Dong-wook K, Satoshi K. Advanced Power Technology, 2018, 29(1), 168.
[14] Hoffman R. Theory and Experimental Tests, 1972, 16, 155.
[15] Brady J F. The Journal of Chemical Physics, 1989, 91, 1866.
[16] Srivastava A, Majumdar A, Butola B. Critical Reviews in Solid State and Materials Sciences, 2012, 37(2), 115.
[17] Gürgen S, Li W, Kuhan M C. Materials & Design, 2016, 104, 312.
[18] Majumdar S, Krishnaswamy R, Sood A K. Proceedings of the Nation Academy of Sciences of the United States of America, 2011, 108(22), 8996.
[19] Gurgen S, Li W H, Kushan M C. Materials & Design, 2016, 104, 312.
[20] Gurgen S, Kushan M C, Li W H. Korea-Australia Rheology Journal, 2016, 28(2), 121.
[21] Sun L, Zhu J, Wei M H, Zhang C W. Materials Research Express, 2018, 5(5), 025702.
[22] Dai L T, Maurin I, Foldyna M, et al. Nanotechnology, 2018, 29(43), 095201.
[23] Williams K R. Gupta K, Wasilik M. Journal of Microelectromechanical Systems, 2003, 12(6), 761.
[24] Zhang Y C, Zhu H Y, Huang J N, et al. Acta Physica Sinica, 2009, 58(S1), 292(in Chinese).
张迎晨, 朱海燕, 黄婧南, 等. 物理学报, 2009, 58(S1), 292.
[25] Hansen T S, West K, Hassager O, et al. Advanced Functional Materials, 2007, 17, 3069.
[26] Lei B H. Research on modified fibers and fabrics of silicon nanowires. Master’s Thesis, Southwest Petroleum University, China, 2016 (in Chinese).
雷兵航. 硅纳米线改性纤维和织物的研究. 硕士学位论文, 西南石油大学, 2016.
[27] Xie Y Y, Yang H L, Ruan J M. Materials Science and Engineering of Powder Metallurgy, 2010, 15(1), 1(in Chinese).
谢元彦, 杨海林, 阮建明. 粉末冶金材料科学与工程, 2010, 15(1), 1.
[28] Yu K J, Sha X F, Cao H J, et al. Glass Steel/Composite Material, 2012(6), 47(in Chinese).
俞科静, 沙晓菲, 曹海建, 等. 玻璃钢/复合材料, 2012(6), 47.
[29] Kang T J, Hong K H, Yoo M R. Fibers and Polymers, 2010, 11(5), 719.
[30] Kang T J, Kim C Y, Hong K H. Journal of Applied Polymer Science, 2012, 124(2), 1534.
[31] Hasanzadeh M, Mottaghitalab V. Journal of Materials Engineering and Performance, 2014, 23(4), 1182.
[32] Decker M J, Halbach C J, Nam C H, et al. Composites Science and Technology, 2007, 67, 565.
[33] Yu K J, Sha X F, Qian K, et al. Journal of Functional Materials, 2012, 43(23), 3300 (in Chinese).
俞科静, 沙晓菲, 钱坤, 等. 功能材料, 2012, 43(23), 3300.
[34] Sha X F. Preparation and properties research of shear thickening liquid. Master’s Thesis, Jiangnan University, China, 2014 (in Chinese).
沙晓菲. 剪切增稠液体的制备与性能研究. 硕士学位论文, 江南大学, 2014.
[35] Mahfuz H, Clements F, Rangari V. Journal of Applied Physics, 2009, 105(6), 064307.
[36] Laha A, Majumdar A. Materials & Design, 2016, 89, 286.
[37] Gurgen S, Kushan M C, Li W H. Progress in Polymer Science, 2017, 75, 48.
[38] Xu Y, Chen X G, Wang Y. S. Composite Structures, 2017, 163, 465.
[39] He Q Y, Cao S S, Wang Y P, et al. Composites Part A-Applied Science and Manufacturig, 2018, 106, 82.
[1] 魏明海, 孙丽, 张春巍, 齐佩佩, 朱洁. 纳米氧化锆和氧化硅混合体系剪切增稠液的流变性能[J]. 材料导报, 2019, 33(12): 1969-1974.
[2] 秦建彬,张广成,史学涛. 剪切增稠液及其复合材料*[J]. 《材料导报》期刊社, 2017, 31(7): 59-64.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed