Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 59-64    https://doi.org/10.11896/j.issn.1005-023X.2017.07.009
  材料综述 |
剪切增稠液及其复合材料*
秦建彬,张广成,史学涛
西北工业大学理学院,西安 710072
Shear Thickening Fluids and Their Composites
QIN Jianbin, ZHANG Guangcheng, SHI Xuetao
School of Science, Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 1819KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 剪切增稠液以其独有的剪切增稠效应引起了研究者的关注,以其为增强体开发的复合材料显著增强了基体材料的抗冲击性能。首先综述了剪切增稠液的基本性质、影响剪切增稠行为的因素、新型剪切增稠液体系和不同剪切增稠体系的增稠机理,然后概述了基于剪切增稠液制备的复合材料在防弹防割刺、抗冲击和夹层结构等领域的应用,并对其作用机理进行了阐述,最后展望了剪切增稠液及其复合材料的发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦建彬
张广成
史学涛
关键词:  剪切增稠液  复合材料  抗冲击  防弹  防割刺    
Abstract: Shear thickening fluid (STF) has aroused researchers' attentions for its unique shear thickening behavior. The impact resistance of composite reinforced by STF is enhanced remarkably. This review focuses on basic properties of STF, factors inf-luencing the shear thickening behavior, novel shear thickening fluid systems, and shear thickening mechanisms for distinct STFs. It also states the applications of STF-based composites in the fields of bulletproofness, stab resistance, impact resistance, and sandwich structured composites, as well as the corresponding working mechanisms. In addition, the future development of shear thickening fluid and its composites is discussed.
Key words:  shear thickening fluid    composite    impact resistance    bulletproofness    stab resistance
               出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TB332  
基金资助: *国家青年科学基金(51303149);西北工业大学基础研究基金(3102014JC01095)
通讯作者:  张广成,男,教授,博士研究生导师,主要研究方向:(1)高性能聚合物结构泡沫塑料;(2)工程塑料的改性及应用;(3)高分子材料成型加工新技术;(4)功能高分子材料的制备、结构与应用;(5)树脂基复合材料的结构与性能E-mail:zhangguc@nwpu.edu.cn   
作者简介:  秦建彬:男,1986年生,博士研究生,主要从事剪切增稠液及其复合材料的研究
引用本文:    
秦建彬,张广成,史学涛. 剪切增稠液及其复合材料*[J]. 《材料导报》期刊社, 2017, 31(7): 59-64.
QIN Jianbin, ZHANG Guangcheng, SHI Xuetao. Shear Thickening Fluids and Their Composites. Materials Reports, 2017, 31(7): 59-64.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.009  或          http://www.mater-rep.com/CN/Y2017/V31/I7/59
1 Hoffman R L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. Ⅰ. Observation of a flow instability [J]. Trans Soc Rheol,1972,16(1):155.
2 Barnes H A. Shear-thickening (“Dilatancy”) in suspensions of nonaggregating solid particles dispersed in newtonian liquids [J]. J Rheol,1989,33(2):329.
3 Lee Y S, Wetzel E D, Wagner N J. The ballistic impact characteristics of Kevlar??woven fabrics impregnated with a colloidal shear thickening fluid [J]. J Mater Sci,2003,38(13):2825.
4 Maranzano B J, Wagner N J. The effects of particle size on reversible shear thickening of concentrated colloidal dispersions [J]. J Chem Phys,2001,114(23):10514.
5 Egres R G, Wagner N J. The rheology and microstrueture of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition [J]. J Rheol,2005,49(3):719.
6 Jiang W, Sun Y, Xu Y, et al. Shear-thickening behavior of poly-methylmethacrylate particles suspensions in glycerine-water mixtures [J]. Rheol Acta,2010,49(11-12):1157.
7 Peters I R, Jaeger H M. Quasi-2D dynamic jamming in cornstarch suspensions: Visualization and force measurements [J]. Soft Matter,2014,10(34):6564.
8 Bertrand E, Bibette J, Schmitt V. From shear thickening to shear-induced jamming [J]. Phys Rev E,2002,66(6):060401.
9 Brown E, Zhang H, Forman N A, et al. Shear thickening and jamming in densely packed suspensions of different particle shapes [J]. Phys Rev E,2011,84(3):031408.
10 Bender J, Wagner N J. Reversible shear thickening in monodisperse and bidisperse colloidal dispersions [J]. J Rheol,1996,40(5):899.
11 Shenoy S S, Wagner N J. Influence of medium viscosity and adsorbed polymer on the reversible shear thickening transition in concentrated colloidal dispersions [J]. Rheol Acta,2005,44(4):360.
12 Franks G V, Zhou Z, Duin N J, et al. Effect of interparticle forces on shear thickening of oxide suspensions [J]. J Rheol,2000,44(4):759.
13 Gopalakrishnan V, Zukoski C F. Effect of attractions on shear thic-kening in dense suspensions [J]. J Rheol,2004,48(6):1321.
14 Maranzano B J, Wagner N J. The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions [J]. J Rheol,2001,45(5):1205.
15 Chen Q, Zhu W, Ye F, et al. pH effects on shear thickening beha-viors of polystyrene-ethylacrylate colloidal dispersions[J]. Mater Res Express,2014,1(1):015303.
16 Yu K, Cao H, Qian K, et al. Shear-thickening behavior of modified silica nanoparticles in polyethylene glycol [J]. J Nanopart Res,2012,14(3):1.
17 Qin J, Zhang G, Shi X, et al. Study of a shear thickening fluid: The dispersions of silica nanoparticles in 1-butyl-3-methylimidazolium tetrafluoroborate[J]. J Nanopart Res,2015,17(8):1.
18 Qin J, Zhang G, Ma Z, et al. Effects of ionic structures on shear thickening fluids composed of ionic liquids and silica nanoparticles[J]. RSC Adv,2016,6(85):81913.
19 Qin J, Zhang G, Shi X. Viscoelasticity of shear thickening fluid based on silica nanoparticles dispersing in 1-butyl-3-methylimidizolium tetrafluoroborate[J]. J Dispers Sci Technol,2016,37(11):1599.
20 Boersma W H, Laven J, Stein H N. Shear thickening (dilatancy) in concentrated dispersions [J]. AIChE J,1990,36(3):321.
21 Chow M K, Zukoski C F. Nonequilibrium behavior of dense suspensions of uniform particles: Volume fraction and size dependence of rheology and microstructure [J]. J Rheol,1995, 39(1):33.
22 Brady J F, Bossis G. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation [J]. J Fluid Mech,1985,155:105.
23 Brady J F, Bossis G. Stokesian dynamics [J]. Ann Rev Fluid Mech,1988,20:111.
24 Phung T, Brady J F. Microstructured fluids: Structure, diffusion and rheology of colloidal dispersions[C]//Slow dynamics in condensed matter.1992:391.
25 Boersma W H, Laven J, Stein H N. Computer simulations of shear thickening of concentrated dispersions [J]. J Rheol,1995,39(5):841.
26 Laun H M, Bung R, Hess S, et al. Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flow [J]. J Rheol,1992,36(4):743.
27 D'Haene P, Mewis J, Fuller G G. Scattering dichroism measurements of flow-induced structure of a shear thickening suspension [J]. J Colloid Interface Sci,1993,156(2):350.
28 Chow M K, Zukoski C F. Gap size and shear history dependencies in shear thickening of a suspension ordered at rest [J]. J Rheol,1995,39(1):15.
29 Butera R J, Wolfe M S, Bender J, et al. Formation of a highly ordered colloidal microstructure upon flow cessation from high shear rates [J]. Phys Rev Lett,1996,77(10):2117.
30 Bender J W, Wagner N J. Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions [J]. J Colloid Interface Sci,1995,172(1):171.
31 Hoffman R L. Explanations for the cause of shear thickening in concentrated colloidal suspensions [J]. J Rheol,1998,42(1):111.
32 Cheng X, McCoy J H, Israelachvili J N, et al. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions [J]. Science,2011,333(6047):1276.
33 Heussinger C. Shear thickening in granular suspensions: Interparticle friction and dynamically correlated clusters [J]. Phys Rev E,2013,88(5):050201.
34 Wagner N J,Brady J F. Shear thickening in colloidal dispersions [J]. Phys Today, 2009,62 (10):27.
35 Farr R S, Melrose J R, Ball R C. Kinetic theory of jamming in hard-sphere startup flows [J]. Phys Rev E,1997,55(6):7203.
36 Fall A, Huang N, et al. Shear thickening of cornstarch suspensions as a reentrant jamming transition [J]. Phys Rev Lett,2008,100:018301.
37 Seto R, Mari R, Morris J F, et al. Discontinuous shear thickening of frictional hard-sphere suspensions [J]. Phys Rev Lett,2013,111(21):218301.
38 Fernandez N, Mani R, Rinaldi D, et al. Microscopic mechanism for shear thickening of non-Brownian suspensions [J]. Phys Rev Lett,2013,111(10):108301.
39 Wetzel E D, Lee Y S, Egres R G, et al. The effect of rheological parameters on the ballistic properties of shear thickening fluid (STF)-Kevlar composites[C]∥AIP Conference Proceedings.2004:288.
40 Park Y, Kim Y H, et al. Empirical study of the high velocity impact energy absorption characteristics of shear thickening fluid (STF) impregnated Kevlar fabric[J]. Int J Impact Eng,2014,72:67.
41 Lee B W, Kim I J, Kim C G. The influence of the particle size of si-lica on the ballistic performance of fabrics impregnated with silica colloidal suspension[J]. J Compos Mater,2009,43:2679.
42 Decker M J, Halbach C J, Nam C H, et al. Stab resistance of shear thickening fluid (STF)-treated fabrics [J]. Compos Sci Technol,2007,67(3):565.
43 Wu Qiumei. Rheology of the SiO2 suspensions and the it's application in the defensive materials [D]. Changsha:Central South University, 2007(in Chinese).
伍秋美. SiO2分散体系流变学研究及其在防护材料方面的应用 [D]. 长沙:中南大学,2007.
44 Gong X, Xu Y, Zhu W, et al. Study of the knife stab and puncture-resistant performance for shear thickening fluid enhanced fabric[J]. J Compos Mater,2014,48(6):641.
45 Feng X, Li S, Wang Y, et al. Effects of different silica particles on quasi-static stab resistant properties of fabrics impregnated with shear thickening fluids[J]. Mater Des,2014,64:456.
46 Srivastava A, Majumdar A, Butola B S. Improving the impact resistance performance of Kevlar fabrics using silica based shear thic-kening fluid[J]. Mater Sci Eng A,2011,529:224.
47 Mahfuz H, Clements F, Rangari V, et al. Enhanced stab resistance of armor composites with functionalized silica nanoparticles[J]. J Appl Phys,2009,105(6):064307.
48 Soutrenon M, Michaud V. Impact properties of shear thickening fluid impregnated foams [J]. Smart Mater Struct,2014,23(035022): 1.
49 Warren J, Offenberger S, Toghiani H, et al. Effect of temperature on the shear-thickening behavior of fumed silica suspensions[J]. ACS Appl Mater Interfaces,2015,7(33):18650.
50 Neagu R C, Bourban P E, M?nson J A E. Micromechanics and damping properties of composites integrating shear thickening fluids[J]. Compos Sci Technol,2009,69(3):515.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 张景卫, 李地红, 高群, 于海洋, 代函函. 橡胶形态及分布对水泥制品抗冲击能力的影响[J]. 材料导报, 2019, 33(z1): 261-263.
[10] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[11] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[12] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[13] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[14] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[15] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed