Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8116-8120    https://doi.org/10.11896/cldb.19080181
  金属与金属基复合材料 |
Ti-6Al-4V三元合金焊接熔池凝固组织模拟
张敏, 郭宇飞, 黄超, 张立胜, 张文辉
西安理工大学材料科学与工程学院,西安 710048
Solidification Microstructure Simulation of Ti-6Al-4V Ternary Alloy Welding Pool
ZHANG Min, GUO Yufei, HUANG Chao, ZHANG Lisheng, ZHANG Wenhui
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048
下载:  全 文 ( PDF ) ( 4126KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将二元合金元胞自动机模型与热力学相平衡求解软件相结合,提出了一种三元合金元胞自动机模型。对模型的稳定性进行了验证,模拟了Ti-6Al-4V三元合金焊接熔池凝固过程中枝晶的生长形貌、溶质浓度的分布以及扰动振幅对枝晶生长的影响,并进行了金相实验验证。结果表明,模型稳定性良好,能够实现三元合金焊接熔池凝固过程的数值模拟;熔池中枝晶择优生长显著,且存在晶界偏析现象;Al元素与V元素在液相中的浓度分布规律大致相同;随着扰动振幅的增大,熔池中的枝晶数量逐渐增加,枝晶臂间距减小,竞争生长进一步加强;模拟结果与实验结果基本吻合。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张敏
郭宇飞
黄超
张立胜
张文辉
关键词:  三元合金  元胞自动机  焊接熔池  枝晶形貌  溶质浓度    
Abstract: Based on the binary alloy cellular automaton model, combined with the thermodynamic phase equilibrium software, a ternary alloy cellular automaton model was proposed. The stability of the model was verified. The morphology of dendritic growth, the distribution of solute concentration and the effect of disturbance amplitude on dendritic growth during solidification of the welding pool of Ti-6Al-4V ternary alloy were simulated. And carried out metallographic experiments to verify. The results show that the model is stable and can realize the numerical simulation of solidification process in the weld pool of ternary alloy, and the preferred growth of dendrite in the weld pool is remarkable and there is grain boundary segregation. The concentration distribution of Al and V in the liquid phase is approximately the same. As the amplitude of the disturbance increases, the number of dendrites in the molten pool increases gradually, the distance between the dendrite arms decreases, and the competitive growth further strengthens. The simulation results are basically consistent with the experimental results.
Key words:  ternary alloy    cellular automaton    welding pool    dendritic morphology    solute concentration
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TG401  
基金资助: 国家自然科学基金(51974243);陕西省自然科学基础研究计划项目(2019JZ-31);西安市科技计划项目(201805037YD15CG21(16))
通讯作者:  zhmmn@xaut.edu.cn   
作者简介:  张敏,西安理工大学教授,博士研究生导师。1997年于西安交通大学毕业后至西安理工大学任职至今。主要从事焊接成型过程的力学行为及其结构质量控制以及焊接凝固过程的组织演变行为及其先进焊接材料。现任陕西省焊接学会副理事长兼副秘书长、西安市焊接学会理事长,获陕西省教育厅科技进步奖两项、陕西省科技进步奖两项,累计发表论文100余篇。
引用本文:    
张敏, 郭宇飞, 黄超, 张立胜, 张文辉. Ti-6Al-4V三元合金焊接熔池凝固组织模拟[J]. 材料导报, 2021, 35(8): 8116-8120.
ZHANG Min, GUO Yufei, HUANG Chao, ZHANG Lisheng, ZHANG Wenhui. Solidification Microstructure Simulation of Ti-6Al-4V Ternary Alloy Welding Pool. Materials Reports, 2021, 35(8): 8116-8120.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080181  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8116
1 Liu Y, Qu Z D, Wang B X. Ordnance Material Science and Engineering,2005,28(1),47(in Chinese).
刘莹,曲周德,王本贤.兵器材料科学与工程,2005,28(1),47.
2 Chen S J, Zhu C L. Hot Working Technology,2015,44(3),18(in Chinese).
陈思杰,朱春莉.热加工工艺,2015,44(3),18.
3 Li X Y, Li F, Mou G, et al. Electric Welder,2017,47(4),67(in Chinese).
李兴宇,李芳,牟刚,等.电焊机,2017,47(4),67.
4 Song K, Mao X N, Xin S W, et al. Materials Reports,2018,32(S2),345(in Chinese).
宋凯,毛小南,辛社伟,等.材料导报,2018,32(S2),345.
5 Li J H, Wang Q, Wu W G, et al. Materials Reports B: Research Papers,2013,27(6),152(in Chinese).
李继红,汪强,吴伟刚,等.材料导报:研究篇,2013,27(6),152.
6 Zhang M, Zhou Y L, Xue Q, et al. Transactions of the China Welding Institution,2018,39(3),6(in Chinese).
张敏,周玉兰,薛覃,等.焊接学报,2018,39(3),6.
7 Wang T M, Wei J J, Wang X D, et al. Acta Metallurgica Sinica,2018,54(2),193(in Chinese).
王同敏,魏晶晶,王旭东,等.金属学报,2018,54(2),193.
8 Zhang M, Li L L, Xu A Y, et al. The Chinese Journal of Nonferrous Metals,2015,25(10),2854(in Chinese).
张敏,李露露,徐蔼彦,等.中国有色金属学报,2015,25(10),2854.
9 Zinoviev A, Zinovieva O, Ploshikhin V, et al. Materials & Design,2016,106(15),321.
10 Akbari M, Asadi P, Givi M K B, et al. Modelling and Simulation in Materials Science and Engineering,2016,24(3),035012.
11 Han R, Li Y, Lu S. International Journal of Heat and Mass Transfer,2017,106,1345.
12 Zhan X, Lin X, Gao Z, et al. Journal of Alloys & Compounds,2018,755,123.
13 Shi Y F, Zhang Y, Xu Q Y, et al. Materials Science and Engineering,2012,33(1),012112.
14 Long W Y, Cai Q Z, Wei B K, et al. Acta Physica Sinica,2006,55(3),1341(in Chinese).
龙文元,蔡启舟,魏伯康,等.物理学报,2006,55(3),1341.
15 Zhu M F, Cao W, Chen S L, et al. Journal of Phase Equilibria and Diffusion,2007,28(1),130.
16 Li Q, Wang Y, Zhang H W, et al. Ironmaking & Steelmaking,2009,36(6),442.
17 Chen R, Xu Q Y, Wu Q F, et al. Acta Metallurgica Sinica,2015,51(6),733(in Chinese).
陈瑞,许庆彦,吴勤芳,等.金属学报,2015,51(6),733.
18 Chen R, Xu Q, Liu B. Computational Materials Science,2015,105,90.
19 Chen R, Xu Q Y, Liu B C. Acta Metallurgica Sinica (English Letters),2015,28(2),173.
20 Liu B Z. Simulation of dendritic growth during multicomponent alloy soli-dification with a front-tracking method. Master's Thesis, Shandong Jianzhu University, China,2016(in Chinese).
刘波祖.合金凝固过程枝晶生长的界面前沿跟踪法模拟.硕士学位论 文,山东建筑大学,2016.
[1] 方继恒, 刘曦, 谢明, 胡洁琼, 王松, 张吉明, 杨有才, 陈永泰, 王塞北, 李再久. 过热度、传热系数以及高斯分布参数对Ag-28Cu-2Ni合金凝固组织的影响[J]. 材料导报, 2019, 33(18): 3077-3084.
[2] 孙宇, 周琛, 万志鹏, 任丽丽, 胡连喜. 金属材料动态再结晶模型研究现状*[J]. 《材料导报》期刊社, 2017, 31(13): 12-16.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed