Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 83-87    https://doi.org/10.11896/j.issn.1005-023X.2017.07.013
  材料综述 |
高温应用钼及钼合金表面改性研究进展*
张勇1,2,3,王雄禹1,于静1,曹维成2,冯鹏发2,焦生杰3
1 长安大学材料科学与工程学院,西安 710064;
2 金堆城钼业股份有限公司技术中心,西安 710077;
3 长安大学机械工程博士后科研流动站,西安 710064
Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature
ZHANG Yong1,2,3, WANG Xiongyu1, YU Jing1, CAO Weicheng2,FENG Pengfa2, JIAO Shengjie3
1 School of Materials Science and Engineering, Chang’an University, Xi’an 710064;
2 Technical Center, Jinduicheng Molybdenum Co., Ltd., Xi’an 710077;
3 Postdoctoral Scientific Research Station of Mechanical Engineering, Chang’an University,Xi’an 710064
下载:  全 文 ( PDF ) ( 1315KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钼及钼合金因具有高熔点、高硬度、力学性能优异等优点,被广泛应用于军工、航空和航天等领域。但钼及钼合金在高温使用时存在抗氧化、抗烧蚀和耐磨损性能较差等缺陷,严重影响了钼及钼合金的高温使用性能。研究发现,通过表面改性能有效解决上述问题。首先提出了高温应用钼及钼合金表面改性涂层需满足的基本要求,系统地综述了改性涂层在改善高温应用钼及钼合金抗氧化、抗烧蚀和耐磨损性能方面的研究进展,介绍了常见改性涂层的制备方法,并指出了目前该研究领域存在的问题及今后的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张勇
王雄禹
于静
曹维成
冯鹏发
焦生杰
关键词:  高温应用  钼及钼合金  表面改性    
Abstract: Molybdenum and molybdenum alloys have been widely used in military, aerospace and other fields because of their high melting point, high hardness and excellent mechanical properties. However, the high temperature application properties of molybdenum and molybdenum alloys has been seriously affected by the defects such as bad oxidation resistance, low ablation resistance and poor wear resistance at elevated temperature. It is found that the surface modification can effectively solve the above problems. In this paper, the basic requirements of surface modification coating for high temperature application molybdenum and molybdenum alloy are proposed firstly. The main research progress on the improved oxidation resistance, ablation resistance and wear resistance of surface modified molybdenum and molybdenum alloys at elevated temperature is systematically reviewed. The coating preparation me-thods are introduced, and the existing problems and development prospects of research in this field are also proposed.
Key words:  high temperature application    molybdenum and molybdenum alloys    surface modification
出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TG146.4  
基金资助: *陕西省自然科学基金(2016JQ5064);材料成形与模具技术国家重点实验室开放课题研究基金(P2016-13);中央高校基本科研业务费专项资金(310831151079)
作者简介:  张勇:男,1981年生,博士,副教授,研究方向为新能源材料及器件的制备与性能表征E-mail:chdzhangyong@chd.edu.cn
引用本文:    
张勇,王雄禹,于静,曹维成,冯鹏发,焦生杰. 高温应用钼及钼合金表面改性研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 83-87.
ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature. Materials Reports, 2017, 31(7): 83-87.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.013  或          https://www.mater-rep.com/CN/Y2017/V31/I7/83
1 Ju Yanpeng, Wang Aiqin. Current research status of Mo alloys[J]. Powder Metall Ind,2015, 25(4):58(in Chinese).
居炎鹏, 王爱琴. 钼合金研究现状[J]. 粉末冶金工业,2015,25(4):58.
2 Gao Mingchuan,Tong Xiangyang,Wang Hongsheng.Research progress of Mo-based coatings fabricated by thermal spray technology[J].China Molybdenum Ind,2014,38(6):41(in Chinese).
高名传,童向阳,汪洪生. 热喷涂法制备钼系涂层的研究进展[J]. 中国钼业,2014,38(6):41.
3 Shi Jun, Liu Ning, et al. Progress of research on molybdenum and its alloy[J]. Thermal Treat,2014,29(5):19(in Chinese).
石俊, 刘宁, 等. 钼及钼合金研究的进展[J]. 热处理,2014,29(5):19.
4 Fan Jinglian, Lu Mingyuan, Cheng Huichao. Effect of alloying elements Ti, Zr on the property and microstructure of molybdenum[J]. Int J Refractory Met Hard Mater,2009,27:78.
5 Wang Jiteng, Wang Juan, Li Yajiang, et al. Progress of research on welding for molybdenum alloys [J]. High Temperature Mater Prog,2014,33(3):193.
6 Cheng Huichao, Fan Jinglian, Li Pengfei, et al. Oxidation resis-tance and ablation behavior of refractory alloy at high temperature[J]. Chin J Nonferrous Met,2011,21(3):570(in Chinese).
成会朝, 范景莲, 李鹏飞, 等. 难熔钼合金的高温抗氧化和烧蚀行为[J]. 中国有色金属学报,2011,21(3):570.
7 Chen Chuang, Wei Shizhong, Zhang Guoshang, et al. Current research and application development of molybdenum alloy[J]. Rare Met Cem Carbides,2012,40(5):45(in Chinese).
陈闯, 魏世忠, 张国赏, 等. 钼合金的研究现状与应用进展[J]. 稀有金属与硬质合金, 2012,40(5):45.
8 Riedl H, Vieweg A, Limbeck A, et al. Thermal stability and mechanical properties of boron enhanced Mo-Si coatings[J]. Surf Coat Technol,2015,280:282.
9 Qu Jianglong. Study of B, Y-modified pack Si deposition coating on molybdenum[D]. Xi’an: Chang’an University,2014(in Chinese).
曲江龙. 钼表面B, Y改性包埋渗Si涂层研究[D]. 西安: 长安大学,2014.
10 李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001.
11 Wang Yi, Wang Dezhi, Sun Aokui, et al. The advance on the oxidation resistance coating of molybdenum and its alloys[J].Mater Rev: Rev,2012,26(1):137(in Chinese).
汪异, 王德志, 孙翱魁, 等. 钼及其合金氧化防护涂层的研究进展[J]. 材料导报: 综述篇,2012,26(1):137.
12 Xie Nengping. Study on preparation and properties of silicides coa-ting on the molybdenum surface by in-situ synthesizing[D]. Xiangtan: Hunnan University of Science and Technology,2011(in Chinese).
谢能平. 钼表面原位合成硅化物涂层的制备工艺与性能研究[D]. 湘潭: 湖南科技大学,2011.
13 Song Rui, Wang Kuaishe, Hu Ping, et al. Present situation of anti-oxidation coatings preparation on molybdenum and its alloys[J]. Mater Rev: Rev,2016,30(5):69(in Chinese).
宋瑞, 王快社, 胡平, 等. 钼及钼合金表面高温抗氧化涂层研究现状[J]. 材料导报: 综述篇,2016,30(5):69.
14 Chakraborty S P, Banerjee S, Sharma I G, et al. Development of sili-cide coating over molybdenum based refractory alloy and its characterization [J]. J Nuclear Mater,2010, 403(1-3):152.
15 Wu Heng, Li Hejun, Wang Yongjie, et al. Effect of deposition temperature on microstructures and properties of MoSi2 coatings prepared by low pressure chemical vapor deposition[J]. J Inorg Mater,2009,24(2):392(in Chinese).
吴恒, 李贺军, 王永杰, 等. 低压沉积温度对MoSi2涂层微观结构与性能影响[J]. 无机材料学报,2009,24(2):392.
16 Gu Siyong, Zhang Houan, Xie Nengping. Oxidation property of MoSi2/Si3N4 coating on Mo substrate[J]. J Xiamen University of Technology,2011,19(2):18(in Chinese).
古思勇, 张厚安, 谢能平. 金属钼表面MoSi2/Si3N4涂层的氧化性能研究[J]. 厦门理工学院学报,2011,19(2):18.
17 Nicholls J R, Simms N J, Chan W Y, et al. Smart overlay coatings-concept and practice[J]. Surf Coat Technol,2002,149(2-3):236.
18 Huang Can, Zhang Yongzhong, Rui Vilar. Microstructure and anti-oxidation behavior of laser clad Ni-20Cr coating on molybdenum surface[J]. Surf Coat Technol,2010,205(3):835.
19 Zhang Wei, Gao Lianze, Xie Qitian. The experimental study of the effect of the structural factors of the nozzle on the nozzle throat depo-sition[J]. J Harbin Shipbuilding Engineering Institute,1983,4(1):25(in Chinese).
张唯, 高连泽, 谢其钿. 喷管结构因素对喉衬沉积影响的实验研究[J]. 哈尔滨船舶工程学院学报,1983,4(1):25.
20 Wei Yanjun. Research on ablation charateristics of extended range projectile engine nozzle[D]. Shenyang: Shenyang Ligong University,2014(in Chinese).
魏岩峻. 增程弹发动机喷管烧蚀特性研究[D]. 沈阳: 沈阳理工大学,2014.
21 Jiang Fan, Gao Xinyi. The SEM examination of molybdenum nozzle and the investigation of erosion mechanism[J]. Acta Armam,1984 (3):31(in Chinese).
蒋凡, 高新宜. 钼喷管的SEM检验及烧蚀机理的探讨[J]. 兵工学报,1984(3):31.
22 Chang Chun, Yu Dajiang, Liu Shaobin, et al. Microstructures and corrosion resistance of molybdenum-alumina materials[J]. J Chin Ceram Soc,2008,36(8):1124(in Chinese).
常春, 余大江, 刘少斌, 等. Mo/Al2O3材料的微观结构和抗腐蚀性[J]. 硅酸盐学报,2008,36(8):1124.
23 Carreri F C, Oliveira R M, Oliveira A C, et al. Phase formation and mechanical/tribological modification induced by nitrogen high temperature plasma based ion implantation into molybdenum[J]. Appl Surf Sci,2014,310:305.
24 Sun Jia, Fu Qiangang, Guo Liping, et al. Effect of filler on the oxidation protective ability of MoSi2 coating for Mo ubstrate by halide activated pack cementation[J]. Mater Des,2016, 92:602.
25 Yoon J K, Kim G H, Byun J Y, et al. Effect of Cl/H input ratio on the growth rate of MoSi2 coatings formed by chemical vapor deposition of Si on Mo substrate from SiCl4-H2 precursor gases[J]. Surf Coat Technol,2003,172(2-3):176.
26 Weis S, Uhlig T, Wagner G, et al. High-temperature corrosion and radiation characteristics of thermal sprayed molybdenum disilicide-based coatings[C]//18th Chemnitz Seminar on Materials Enginee-ring. Chemnitz,2016.
27 Hou Fengliang, Ni Feng, Cui Yansui, et al. Abrasive wear properties of Al2O3/Mo composite[J].Acta Mater Compos Sin,2011,28(4):136(in Chinese).
侯风亮, 倪峰, 崔延遂, 等. Al2O3/Mo复合材料的磨料磨损性能[J]. 复合材料学报, 2011,28(4):136.
28 Gu Siyong, Zhang Houan, Wu Yihui, et al. Preparation of Mo-C-N-Si coating on Mo substrate and its oxidation property at high tempe-rature[J]. Rare Met Mater Eng,2014,43(5):1219(in Chinese).
古思勇, 张厚安, 吴艺辉, 等. 金属钼表面Mo-C-N-Si涂层的制备及其高温氧化特性[J]. 稀有金属材料与工程,2014,43(5):1219.
[1] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[2] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[3] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[4] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[5] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[6] 刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J]. 材料导报, 2024, 38(13): 23030072-11.
[7] 金磊源, 胡芳坤, 姜晓娇, 夏立, 刘冉, 徐佳乐, 涂秋芬, 熊开琴. 基于Notch信号通路抑制剂的多功能血管支架涂层制备及表征[J]. 材料导报, 2024, 38(12): 22120030-8.
[8] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[9] 郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
[10] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[11] 易荣, 王法衡, 刘永财, 李涤尘, 刘亚雄. 聚醚醚酮的表面改性策略综述[J]. 材料导报, 2023, 37(11): 21070057-12.
[12] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[13] 梁朝, 李茹春, 李春全, 孙志明, 陈珍明, 郑水林. 硅酸钙表面有机改性和形貌对填充PP复合材料力学性能的影响及机理[J]. 材料导报, 2022, 36(23): 21080298-8.
[14] 鲁春驰, 王影, 王东征. 涂布正极表面丝网印刷氧化锌颗粒对锂离子电池性能的影响[J]. 材料导报, 2022, 36(21): 21050056-5.
[15] 郑皓华, 邓雅洁, 吴志林. 纳米包装材料表面改性技术及包装形态表现研究[J]. 材料导报, 2022, 36(19): 21110079-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed